В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
АлёнаDances5943
АлёнаDances5943
21.11.2020 17:20 •  Математика

Дан квадратный трехчлен f(x), старший коэффицент которого равен 1. известно, что существует такая пара различных чисел u и v, что f(u)=v2(в смысле в квадрате) и f(v)=u2(в квадрате). докажите,что существует бесконечно много пар чисел с такими свойством.

Показать ответ
Ответ:
танэха
танэха
25.06.2020 15:37
Квадратный трехчлен имеет вид ax^2+bx+c, по условию a=1, тогда наше выражение равно    x^2+bx+c
так как  :
f(u)=v^2\\
f(v)=u^2\\
\\
f(u)=u^2+bu+c=v^2\\
f(v)=v^2+bv+c=u^2
выразим b, и приравняем 
b=\frac{v^2-u^2-c}{u}\\
b=\frac{u^2-v^2-c}{v}\\
\\
 \frac{v^2-u^2-c}{u}=\frac{u^2-v^2-c}{v}\\
(v+\frac{u^2}{v}-\frac{c}{v}+2u)(\frac{v}{u}-1)=0\\

следовательно 
\frac{v}{u}=1
то есть можно бесконечно много подобрать таких параметров
u=v\\
4u^2=c\\
4v^2=c
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота