Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC. Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия. Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C. Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка. Точка M (середина AC): x=(-1+3)/2=1 y=(2+(-2))/2=0 z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC): x=(1+3)/2=2 y=(0+(-2))/2=-1 z=(4+1)/2=5/2
Представим в виде десятичной дроби. Для этого числитель делим на знаменатель.
1) 5/7 = 5 ÷ 7 = 0,7142857143;
2) -8/15 = -8 ÷ 15 = -0,5333333333;
3) 8/9 = 8 ÷ 9 = 0,8888888889;
4) -2/21 = -2 ÷ 21 = -0,0952380952;
5) 5/22 = 5 ÷ 22 = 0,2272727273;
6) 4/45 = 4 ÷ 45 = 0,0888888889;
7) 1 4/11 = (1 × 11 + 4)/11 = 15/11 = 15 ÷ 11 = 1,3636363636;
8) 2 1/16 = (2 × 16 + 1)/16 = 33/16 = 33 ÷ 16 = 2,0625;
9) -1 2/3 = -(1 × 3 + 2)/3 = -5/3 = -5 ÷ 3 = -1,6666;
10) -1 1/27 = -(1 × 27 + 1)/27 = -28/27 = -28 ÷ 27 = -1,037037037;
11) 5 2/3 = (5 × 3 + 2)/3 = 17/3 = 17 ÷ 3 = 5,6666;
12) 4 5/6 = (4 × 6 + 5)/6 = 29/6 = 29 ÷ 6 = 4,8333333333;
Пошаговое объяснение:
Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия.
Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C.
Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка.
Точка M (середина AC):
x=(-1+3)/2=1
y=(2+(-2))/2=0
z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC):
x=(1+3)/2=2
y=(0+(-2))/2=-1
z=(4+1)/2=5/2
N(2;-1;5/2)
MN² = (2-1)²+(-1-0)²+((5/2)-2) = 1+1+1/4 = 9/4 = (3/2)²
|MN| = 3/2
ответ, разумеется, такой же: длина MN равна 1,5.