Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.
.
Пусть , тогда .
Делаем подстановку в наше изначальное выражение:
Здесь сокращаются и мы имеем . Выносим за интеграл: . Теперь мы имеем знакомый интеграл, который равняется , тоже самое что . Подставляем и имеем . Используем фундаментальную теорему исчисления:
Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.
.
Пусть , тогда .
Делаем подстановку в наше изначальное выражение:
Здесь сокращаются и мы имеем . Выносим за интеграл: . Теперь мы имеем знакомый интеграл, который равняется , тоже самое что . Подставляем и имеем . Используем фундаментальную теорему исчисления:
ответ:
Пошаговое объяснение:
ответ: (e-1)/3
Пошаговое объяснение:
Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.
.
Пусть , тогда .
Делаем подстановку в наше изначальное выражение:
Здесь сокращаются и мы имеем . Выносим за интеграл: . Теперь мы имеем знакомый интеграл, который равняется , тоже самое что . Подставляем и имеем . Используем фундаментальную теорему исчисления:
ответ:
Пошаговое объяснение:
ответ: (e-1)/3
Пошаговое объяснение:
Найдём неопределённый интеграл функции e^(x^3)*x^2 чтобы использовать фундаментальную теорему исчисления.
.
Пусть , тогда .
Делаем подстановку в наше изначальное выражение:
Здесь сокращаются и мы имеем . Выносим за интеграл: . Теперь мы имеем знакомый интеграл, который равняется , тоже самое что . Подставляем и имеем . Используем фундаментальную теорему исчисления: