Дана доска 13×13. её клетки выкрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки являются белыми. мистер форд хочет поставить на доску несколько ладей так, чтобы все белые клетки оказались под боем данных ладей (под боем ладьи считаются все клетки строки и столбца, в которых эта ладья стоит). какое наименьшее число ладей сможет поставить мистер форд?
Y=-x³+9*x²
1.Область определения D(x) - Х∈(-∞;+∞) - непрерывная. Нет деления на ноль.
2. Пересечение с осью Х. Y= x²*(x+9) при х = 0,0, 9
Положительна - во всем интервале..
3. Пересечение с осью У. У(0) = 0.
4. Поведение на бесконечности.limY(-∞) = + ∞ limY(+∞) = -∞
Горизонтальной асимптоты - нет.
5. Исследование на чётность.Y(-x) ≠ - Y(x).
Функция ни чётная ни нечётная - общего вида.
6. Производная функции.Y'(x)= -3*x² +18*х = -3*х*(x-6).
Корни при Х= 0 и 6.
(-∞)__(<0-убыв)__(0)___(>0-возр)___(6)__(<0-убыв)_____(+∞)
7. Локальные экстремумы.
Максимум Ymax(6)= 108 , минимум – Ymin(0)=0.
8. Интервалы возрастания и убывания.
Возрастает - между корнями - Х∈[0;6], убывает = Х∈(-∞;0]∪[6;+∞).
8. Вторая производная - Y"(x) = -6*x + 18= -6*(х -3)=0.
Корень производной - точка перегиба Y"(x)= 0 при х=3.
9. Выпуклая “горка» Х∈(3;+∞), Вогнутая – «ложка» Х∈(-∞;3).
10. График в приложении.