Дана фигурная доска и дана : пройти путь конем по данной доске (↓ ↓ ↓ →) не попадая на одну и ту же клетку два раза и находясь на каждой клетке (52 точки)
Строим равнобедренный треугольник АВС (так как АВ=ВС=10,угол В сверху).
Из угла В вниз до АС строим высоту треугольника (то есть перпендикуляр на сторону АС). Ставим точку Н. Высота поделит АС пополам на АН=НС=(2 корней из 19)/2=корень из 19.
Теперь рассмотрим треугольник АВН. Он прямоугольный. И известна длина его гипотенузы АВ=10 и длина прилежащего у углу А катета АН=корень из 19.
Можно вычислить косинус А=(корень из 19)/10 - отношение прилежащего катета к гипотенузе. Синус найдем из основного тригонометрического тождества:
Косинус"2( А) + синус"2 (А) = 1 ("2 - означает вторую степень)
Синус А=корень из(1-((корень из 19)/10)"2) Решаем это уравнение и получаем
Синус А=корень из(1-(19/100))=корень из(81/100)=9/10 (девять десятых) ответ синус А = 9/10=0,9
Sn = (a1+an)•n/2 - сумма арифметической прогрессии, где а1 - первый член, n - количество членов. an = a1 + d(n - 1), где а d - разность. d =1 , поскольку числа натуральные. По условию n = 12-1 = 11 S11 = 2019
an = ak + d(n - k) - формула нахождения n-го члена арифметической прогрессии через k-ый член прогрессии: аk = an - d(n-k) ak = an - 12 + k an = a1 + d(n - 1) an = a1 +11 Следовательно аk = a1 + 11 - 12 + k ak = a1 -1 + k
Sn = (a1+an)•n/2
2019 + ak = (a1 + an) •12/2 a1 - 1 + k = 6(a1 + a1 + 11) - 2019 a1 - 1 + k = 12a1 + 66 - 2019 11a1 = 2019 - 66 - 1 + k 11a1 = 1952 + k Можно подобрать числа. a1 = 178 k = 6 , 6-й член это число 183.
Строим равнобедренный треугольник АВС (так как АВ=ВС=10,угол В сверху).
Из угла В вниз до АС строим высоту треугольника (то есть перпендикуляр на сторону АС). Ставим точку Н. Высота поделит АС пополам на АН=НС=(2 корней из 19)/2=корень из 19.
Теперь рассмотрим треугольник АВН. Он прямоугольный. И известна длина его гипотенузы АВ=10 и длина прилежащего у углу А катета АН=корень из 19.
Можно вычислить косинус А=(корень из 19)/10 - отношение прилежащего катета к гипотенузе. Синус найдем из основного тригонометрического тождества:
Косинус"2( А) + синус"2 (А) = 1 ("2 - означает вторую степень)
Синус А=корень из(1-((корень из 19)/10)"2) Решаем это уравнение и получаем
Синус А=корень из(1-(19/100))=корень из(81/100)=9/10 (девять десятых)
ответ синус А = 9/10=0,9
an = a1 + d(n - 1), где а d - разность.
d =1 , поскольку числа натуральные.
По условию n = 12-1 = 11
S11 = 2019
an = ak + d(n - k) - формула нахождения n-го члена арифметической прогрессии через k-ый член прогрессии:
аk = an - d(n-k)
ak = an - 12 + k
an = a1 + d(n - 1)
an = a1 +11
Следовательно
аk = a1 + 11 - 12 + k
ak = a1 -1 + k
Sn = (a1+an)•n/2
2019 + ak = (a1 + an) •12/2
a1 - 1 + k = 6(a1 + a1 + 11) - 2019
a1 - 1 + k = 12a1 + 66 - 2019
11a1 = 2019 - 66 - 1 + k
11a1 = 1952 + k
Можно подобрать числа.
a1 = 178
k = 6 , 6-й член это число 183.
ответ: 183.