Дана функция у=(х+2)²-1 a) Определите координаты вершины параболы. б) Приведите функцию к виду ах²+бх+с=0 в) В какой точке график данной функции пересекает ось ОУ? г) Найдите точки пересечения графика функции с осью ОХ. д) Постройте график функции.
Доказательства: если всего 14 учеников решило 58 задач,то при этом каждый ученик в среднем решит 4,1 задачи,но при этом есть ученики,которые решили по 1,2,3 задачи.Если мы берем как обязательное,что хотя бы 1 ученик решил 5 задач,мы получаем-1 по 5 задачи на остальных 13 учеников по 53 задач.при этом условии на оставшихся 13 учеников в среднем 4,1 задачи,а это значит,что у нас уже есть как минимум 3 ученика, решившие по 5 задач. А именно если 3 учеников решили по 5 задач, то на остальных 11 приходится в среднем по 3,9 задач
Положение центра вписанной окружности определим, узнав высоту трапеции.
Тогда r = 4/2 = 2. Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание. Диагональ равна:
Радиус описанной окружности равен:
Площадь треугольника равна: S = (1/2)*8*4 = 16 кв.ед. Тогда Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение: H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875. Отсюда Δ = 3.875 - 4 = -0,125. Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания. ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
если всего 14 учеников решило 58 задач,то при этом каждый ученик в среднем решит 4,1 задачи,но при этом есть ученики,которые решили по 1,2,3 задачи.Если мы берем как обязательное,что хотя бы 1 ученик решил 5 задач,мы получаем-1 по 5 задачи на остальных 13 учеников по 53 задач.при этом условии на оставшихся 13 учеников в среднем 4,1 задачи,а это значит,что у нас уже есть как минимум 3 ученика, решившие по 5 задач. А именно если 3 учеников решили по 5 задач, то на остальных 11 приходится в среднем по 3,9 задач
Тогда r = 4/2 = 2.
Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание.
Диагональ равна:
Радиус описанной окружности равен:
Площадь треугольника равна:
S = (1/2)*8*4 = 16 кв.ед.
Тогда
Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение:
H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875.
Отсюда Δ = 3.875 - 4 = -0,125.
Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания.
ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.