Пусть в корзине было х яблок. Сначала из нее взяли ¹/₃х-2, затем - ¹/₂(х-¹/₃х+2)+1 = ¹/₂(²/₃х+2)+1 = ¹/₃х+1+1 = ¹/₃х+2. И наконец взяли ¹/₄(х-¹/₃х+2-¹/₃х-2) = ¹/₄*¹/₃х = ¹/₁₂х. Зная, что при этом осталось 12 яблок, составляем уравнение: ¹/₃х-2+¹/₃х+2+¹/₁₂х+12=х ⁹/₁₂х+12=х х-³/₄х=12 ¹/₄х=12 х=48
Можно и по действиям. 1)1-¹/₄=³/₄ - яблок осталось, что составляет 12. 2) 12:³/₄=16 (яблок) - осталось после второго "взятия". 3) (16+1)*2=34 (яблока) - осталось после первого "взятия". 4) (34-2):²/₃=32*³/₂=48 (яблок) - было всего.
Парабола является кривой, представляющей собой геометрическое место точек,
равноудалённых от фокуса параболы и другой заданной прямой. Эта кривая, а также
соответствующий ей в трёхмерном мире эллиптический параболоид, играют важную
роль во многих физических процессах, в связи с чем нашли широкое применение и
рас во многих инженерных, технических и др. устройствах, в
архитектуре. Парабола изображена на рисунке 1.
Парабола является линией конического сечения, открытие которых
приписывают Менехему. Учение о конических сечениях было развито Евклидом, а
также Аполлонием Пергским, который рассмотрел в своём труде все конические
сечения, а также их свойства, причём труды Аполлония примечательны тем, что они
представляют собой синтез аналитической и начертательной геометрии.
Важным свойством параболы является то, что любой предмет в поле тяготения
перемещается по параболе при отсутствии сопротивления воздуха или в условиях,
когда мы этим фактором можем пренебречь.
Наиболее значимым является т.н. «оптическое свойство» параболы - пучок
лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. Изза этого параболе нашли самые различные применения в различных оптических
устройствах, от ламп и до телескопов. В силу корпускулярно-волновой природы света,
оптические свойства параболы были переложены на составные части различных
радиопередающих устройств, например, узконаправленные, спутниковые антенны и
Сначала из нее взяли ¹/₃х-2, затем - ¹/₂(х-¹/₃х+2)+1 = ¹/₂(²/₃х+2)+1 = ¹/₃х+1+1 = ¹/₃х+2. И наконец взяли ¹/₄(х-¹/₃х+2-¹/₃х-2) = ¹/₄*¹/₃х = ¹/₁₂х.
Зная, что при этом осталось 12 яблок, составляем уравнение:
¹/₃х-2+¹/₃х+2+¹/₁₂х+12=х
⁹/₁₂х+12=х
х-³/₄х=12
¹/₄х=12
х=48
Можно и по действиям.
1)1-¹/₄=³/₄ - яблок осталось, что составляет 12.
2) 12:³/₄=16 (яблок) - осталось после второго "взятия".
3) (16+1)*2=34 (яблока) - осталось после первого "взятия".
4) (34-2):²/₃=32*³/₂=48 (яблок) - было всего.
ответ. 48 яблок.
Пошаговое объяснение:
Парабола является кривой, представляющей собой геометрическое место точек,
равноудалённых от фокуса параболы и другой заданной прямой. Эта кривая, а также
соответствующий ей в трёхмерном мире эллиптический параболоид, играют важную
роль во многих физических процессах, в связи с чем нашли широкое применение и
рас во многих инженерных, технических и др. устройствах, в
архитектуре. Парабола изображена на рисунке 1.
Парабола является линией конического сечения, открытие которых
приписывают Менехему. Учение о конических сечениях было развито Евклидом, а
также Аполлонием Пергским, который рассмотрел в своём труде все конические
сечения, а также их свойства, причём труды Аполлония примечательны тем, что они
представляют собой синтез аналитической и начертательной геометрии.
Важным свойством параболы является то, что любой предмет в поле тяготения
перемещается по параболе при отсутствии сопротивления воздуха или в условиях,
когда мы этим фактором можем пренебречь.
Наиболее значимым является т.н. «оптическое свойство» параболы - пучок
лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. Изза этого параболе нашли самые различные применения в различных оптических
устройствах, от ламп и до телескопов. В силу корпускулярно-волновой природы света,
оптические свойства параболы были переложены на составные части различных
радиопередающих устройств, например, узконаправленные, спутниковые антенны и
проч.