В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Ичиносе
Ичиносе
08.07.2022 01:46 •  Математика

Дано: ΔBCA,BC=AC.
Основание треугольника на 30 см меньше боковой стороны.
Периметр треугольника BCA равен 330 см. Вычисли стороны треугольника.
(В первое окошко введи число, во второе единицы измерения, в ответ нужно записать в см!)

AB=

BC=

AC=

Показать ответ
Ответ:
Gansterghkl
Gansterghkl
17.07.2022 05:48
Нужно найти такие два натуральных (целых) числа, отношение которых равно отношению двух дробных чисел в задании.

Первый решения:
Отношение- это по сути деление одного числа на другое. Выполним это деление, сократив получившуюся дробь:
$\frac{17}{18}:\frac{7}{12}=\frac{17}{18}*\frac{12}{7}=\frac{17*12}{18*7}=\frac{17*2}{3*7}=\frac{34}{21}=34:21$

Конечно, можно подобрать сколько угодно много пар целых чисел, имеющих то же отношение, что и исходные дроби.  Но, существует только одна минимальная пара таких чисел, и мы её получили сокращая дробь (теперь в числителе и знаменателе- взаимно простые числа).

Второй решения (для тех, кто любит повозиться):
Умножим обе дроби на наименьшее общее кратное (НОК) их знаменателей. При этом отношение не изменится, зато вместо дробей мы получим целые числа.

Разложим на простые множители оба знаменателя:
18 = 2 * 9 = 2 * 3 * 3
12 = 2 * 6 = 2 * 2 * 3
Берём каждый простой множитель в максимальном количестве, которое встретилось в разложении одного из знаменателей.
НОК (18,12) = 2 * 2 * 3 * 3 = 36
Теперь умножаем на 36 обе дроби в отношении, сокращаем дроби, и получаем отношение целых чисел:
$\frac{17}{18}:\frac{7}{12}=\frac{17*36}{18}:\frac{7*36}{12}=\frac{17*2}{1}:\frac{7*3}{1}=34:21$
0,0(0 оценок)
Ответ:
Усенька
Усенька
22.01.2021 16:02
График - парабола. Для того, чтобы она была ниже оси абсцисс (OX), нужно, чтобы её ветви были направлены вниз и точка вершины имела ординату (координату y) меньше нуля.
Оси параболы направлены вниз, если коэффициент при x^2 отрицателен. То есть a<0. Ордината вершины параболы ax^2+bx+c=0 находится формуле -\frac{b^2-4ac}{4a}.
Найдём ординату вершины заданной параболы:
-\frac{(-6)^2-4\cdot a\cdot a}{4a}=-\frac{36-4a^2}{4a}=\frac{a^2-9}a
Задача сводится к решению неравенства \frac{a^2-9}a. Как мы установили ранее, a - отрицательное число (ветви параболы направлены вниз). Значит, последняя дробь будет отрицательной тогда, когда её числитель положителен, то есть
a^2-9\ \textgreater \ 0\\(a-3)(a+3)\ \textgreater \ 0
Последнее неравенство справедливо при a\in(-\infty;\;-3)\cup(3;\;+\infty)
Условиям нашей задачи удовлетворяют все a из интервала (-\infty;\;-3)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота