Дано чотири точки А1(х1;у1;z1)А2(х2;у2;z2)A3(x3;y3;z3)A4(x4;y4;z4).Знайти а) рівняння прямої А1А2 б)рівняння прямої А4М паралельно до прямої А1А2 в) рівняння площини що проходить через точку А4 перпендикулярно до прямої А1А2
Из соображений четности, раз сумма четырех чисел нечетна, то хотя бы одно из них четно, а раз оно четное и простое, то оно равно 2.
Пусть d = 2, тогда получаем:
a+b+c = 2019
abcd/10 = abc/5
Предположим, что еще одно число четно и равно 2, но тогда сумма двух оставшихся опять нечетна, а значит есть еще одно число равно 2, но тогда последнее число: 2019 - 4 = 2015 - кратно 5 (не подходит ибо не простое)
Также заметим, что вариант a=b=3 невозможен, ибо 2019 делится на 3, а тогда с кратно 3, то есть не простое. Иначе говоря, минимальный вариант: a = 3; b = 5
Итак, имеем:
a+b+c = 2019, где a,b,c >=3
Первым шагом определим наименьшее значение такого выражения: (предполагая, что a,b,c различные нечетные числа в данном случае не обязательно простые). Если a=b=c достигается максимум abc, что нас не устраивает)
ab+c = Smin
Вычитая первое равенство получаем:
Smin - 2019 = ab - a - b
Smin = 2019 +ab - a - b = 2018 + (a-1)(b-1) >= 2018 + 2*4 = 2026
Достигается, когда: a = 3; b=5
То есть: (ab +c) min = 2026, будет достигнуто, когда a=3; b = 5; c = 2011 соответственно.
Пусть: ab + c = t, при этом c>b>a, тогда найдем минимальное значение abc в зависимости от t:
ab + c = t
abc = Rmin
Rmin = c(t-c) = ct - c^2 - парабола c единственным максимумом : c = t/2, ,то есть до него функция возрастает, а после него убывает, иначе говоря, минимум будет достигнут либо когда с самое малое из возможных, либо когда с самое большое из возможных, но c>b>a, то есть abc минимально возможно, когда с максимальное из возможных, то есть как раз: 2019 - 3 - 5 = 2011
То есть, если ab + c = t, то наименьшее значение abc равно:
min(abc) = 2011(t-2011)
А поскольку min(t) = 2026, то
min(abc) = 2011(2026 - 2011) = 2011 * 15 = 30165
Cогласуется с условием: a=3; b = 5; c = 2011
Заметим, что с = 2011 как раз является простым, что удовлетворяет условию.
Пошаговое объяснение:
простые делятся на 1 и на себя
составные делятся на простые множители
Простые: 5, 7, 23, 29, 11.
Составные:14, 15, 10, 9, 15
14;2=7
15;3=5
10;2=5
9;3=3
15;3=5 чтд
2)
2490 2
1245 3
415 3
105 3
35 5
7 7
1
2490=2*3*3*3*5*7
7056 2
3528 2
1764 2
882 2
441 3
147 3
49 7
7 7
1
7056-2*2*2*2*3*3*7*7
209764 2
104882 2
52441 229
229 229
1
209764=2*2*229*229
ответ: 6033
Пошаговое объяснение:
Из соображений четности, раз сумма четырех чисел нечетна, то хотя бы одно из них четно, а раз оно четное и простое, то оно равно 2.
Пусть d = 2, тогда получаем:
a+b+c = 2019
abcd/10 = abc/5
Предположим, что еще одно число четно и равно 2, но тогда сумма двух оставшихся опять нечетна, а значит есть еще одно число равно 2, но тогда последнее число: 2019 - 4 = 2015 - кратно 5 (не подходит ибо не простое)
Значит: a,b,c>=3 (3 - наименьшее простое нечетное число)
Также заметим, что вариант a=b=3 невозможен, ибо 2019 делится на 3, а тогда с кратно 3, то есть не простое. Иначе говоря, минимальный вариант: a = 3; b = 5
Итак, имеем:
a+b+c = 2019, где a,b,c >=3
Первым шагом определим наименьшее значение такого выражения: (предполагая, что a,b,c различные нечетные числа в данном случае не обязательно простые). Если a=b=c достигается максимум abc, что нас не устраивает)
ab+c = Smin
Вычитая первое равенство получаем:
Smin - 2019 = ab - a - b
Smin = 2019 +ab - a - b = 2018 + (a-1)(b-1) >= 2018 + 2*4 = 2026
Достигается, когда: a = 3; b=5
То есть: (ab +c) min = 2026, будет достигнуто, когда a=3; b = 5; c = 2011 соответственно.
Пусть: ab + c = t, при этом c>b>a, тогда найдем минимальное значение abc в зависимости от t:
ab + c = t
abc = Rmin
Rmin = c(t-c) = ct - c^2 - парабола c единственным максимумом : c = t/2, ,то есть до него функция возрастает, а после него убывает, иначе говоря, минимум будет достигнут либо когда с самое малое из возможных, либо когда с самое большое из возможных, но c>b>a, то есть abc минимально возможно, когда с максимальное из возможных, то есть как раз: 2019 - 3 - 5 = 2011
То есть, если ab + c = t, то наименьшее значение abc равно:
min(abc) = 2011(t-2011)
А поскольку min(t) = 2026, то
min(abc) = 2011(2026 - 2011) = 2011 * 15 = 30165
Cогласуется с условием: a=3; b = 5; c = 2011
Заметим, что с = 2011 как раз является простым, что удовлетворяет условию.
Откуда:
min(abc/5) = 30165/5 = 6033