1. Преобразуем:
2sin^8x - 2cos^8x = cos^2(2x) - cos2x;
2(sin^8x - cos^8x) = cos2x(cos2x - 1);
2(sin^4x + cos^4x)(sin^4x - cos^4x) - cos2x(cos2x - 1) = 0;
2((sin^2x + cos^2x)^2 - 2sin^2xcos^2x)(sin^2x + cos^2x)(sin^2x - cos^2x) + cos2x(1 - cos2x) = 0;
-cos2x(2 - sin^2(2x)) + cos2x(1 - cos2x) = 0;
cos2x(1 - cos2x - 2 + sin^2(2x)) = 0;
cos2x(-1 - cos2x + sin^2(2x)) = 0;
cos2x(1 + cos2x - sin^2(2x)) = 0;
cos2x(cos^2(2x) + cos2x) = 0;
cos^2(2x)(cos2x + 1) = 0.
2. Приравняем множители к нулю:
[cos^2(2x) = 0;
[cos2x + 1 = 0;
[cos2x = 0;
[cos2x = -1;
[2x = π/2 + πk, k ∈ Z;
[2x = π + 2πk, k ∈ Z;
[x = π/4 + πk/2, k ∈ Z;
[x = π/2 + πk, k ∈ Z.
ответ: π/4 + πk/2; π/2 + πk, k ∈ Z.
Пошаговое объяснение:
1) - 5) в прикрепленном файле
6)y= 3-4x+x²
всё, что требуется ищем через первую производную
y'= (3-4x+x²)/ = 2x-4
2x-4=0 ⇒ x₁ = 2 - точка экстремума, также точка смены знака
(-∞; 2 ) y'(0) = -4 <0 - функция убывает
(2; +∞ ) y'(3) = 2 >0 - функция возрастает
[-5;5]
точка экстремума х=2 входит в отрезок. поэтому считаем значение функции в этой точке и на концах отрезка
y(2) = -1
y(-5) = 46
y(5) = 8
на отрезке [-5;5] минимум функции достигается в точке локального минимума и равен
1. Преобразуем:
2sin^8x - 2cos^8x = cos^2(2x) - cos2x;
2(sin^8x - cos^8x) = cos2x(cos2x - 1);
2(sin^4x + cos^4x)(sin^4x - cos^4x) - cos2x(cos2x - 1) = 0;
2((sin^2x + cos^2x)^2 - 2sin^2xcos^2x)(sin^2x + cos^2x)(sin^2x - cos^2x) + cos2x(1 - cos2x) = 0;
-cos2x(2 - sin^2(2x)) + cos2x(1 - cos2x) = 0;
cos2x(1 - cos2x - 2 + sin^2(2x)) = 0;
cos2x(-1 - cos2x + sin^2(2x)) = 0;
cos2x(1 + cos2x - sin^2(2x)) = 0;
cos2x(cos^2(2x) + cos2x) = 0;
cos^2(2x)(cos2x + 1) = 0.
2. Приравняем множители к нулю:
[cos^2(2x) = 0;
[cos2x + 1 = 0;
[cos2x = 0;
[cos2x = -1;
[2x = π/2 + πk, k ∈ Z;
[2x = π + 2πk, k ∈ Z;
[x = π/4 + πk/2, k ∈ Z;
[x = π/2 + πk, k ∈ Z.
ответ: π/4 + πk/2; π/2 + πk, k ∈ Z.
Пошаговое объяснение:
Пошаговое объяснение:
1) - 5) в прикрепленном файле
6)y= 3-4x+x²
всё, что требуется ищем через первую производную
y'= (3-4x+x²)/ = 2x-4
2x-4=0 ⇒ x₁ = 2 - точка экстремума, также точка смены знака
(-∞; 2 ) y'(0) = -4 <0 - функция убывает
(2; +∞ ) y'(3) = 2 >0 - функция возрастает
[-5;5]
точка экстремума х=2 входит в отрезок. поэтому считаем значение функции в этой точке и на концах отрезка
y(2) = -1
y(-5) = 46
y(5) = 8
на отрезке [-5;5] минимум функции достигается в точке локального минимума и равен
y(2) = -1