1)60, 120, 60, 120 Чертим эту высоту, проводим диагональ между тупыми углами. Сравниваем 2 треугольника. Получается что они равны по двум катетам. Значит половина тупого угла равна острому углу. Острый угол -х Тупой - 2х х+2х+х+2х=360 6х=360 х=60 2х=120
2)Не могу, 3)2+3+4=9 ччастей следовательно 1 часть =3 получается стороны треугольника = 9 6 12 .. ср. лин в 2 раза меньше основания .. тогда пекриметр маленького треугольника =9/2+6/2+12/2=4.5+3+6=13.5см а его стороны 4.5 3 . и 6
4)Пусть меньшее основание равна х, тогда большее 2х, следовательно боковые стороны равны по х . Тогда выразим диагонали по теореме косинусов d^2=2x^2-2x^2cosa\\ d^2=x^2+4x^2-2x*2xcos(180-a) 2x^2-2x^2cosa=5x^2+4x^2cosa\\ -6x^2cosa=3x^2\\ cosa=-\frac{1}{2}\\ a=120 другой угол равен 60 гр ответ 60 и 120 гр
ответ: х = –π/2 + 2 * π * k, где k – целое число.
Пошаговое объяснение:
Решим данное тригонометрическое уравнение √(2) * cos(π/4 + x) – cosx = 1 с пояснением.
К левой части уравнения применим формулу cos(α + β) = cosα * cosβ – sinα * sinβ (косинус суммы). Тогда, получим: √(2) * (cos(π/4) * cosх – sin(π/4) * sinх) – cosx = 1.
Согласно таблице основных значений синусов, косинусов, тангенсов и котангенсов, имеем: sin(π/4) = cos(π/4) = √(2) / 2. Следовательно, √(2) * ((√(2) / 2) * cosх – (√(2) / 2) * sinх) – cosx = 1. Раскроем скобки: cosх – sinх – cosx = 1 или sinх = –1.
Полученное тригонометрическое уравнение sinх = –1 имеет следующее решение: х = –π/2 + 2 * π * k, где k – целое число.
Чертим эту высоту, проводим диагональ между тупыми углами. Сравниваем 2 треугольника. Получается что они равны по двум катетам. Значит половина тупого угла равна острому углу. Острый угол -х Тупой - 2х
х+2х+х+2х=360
6х=360
х=60
2х=120
2)Не могу, 3)2+3+4=9 ччастей следовательно 1 часть =3 получается стороны треугольника =
9 6 12 .. ср. лин в 2 раза меньше основания .. тогда пекриметр маленького треугольника =9/2+6/2+12/2=4.5+3+6=13.5см а его стороны 4.5 3 . и 6
4)Пусть меньшее основание равна х, тогда большее 2х, следовательно боковые стороны равны по х .
Тогда выразим диагонали по теореме косинусов
d^2=2x^2-2x^2cosa\\ d^2=x^2+4x^2-2x*2xcos(180-a) 2x^2-2x^2cosa=5x^2+4x^2cosa\\ -6x^2cosa=3x^2\\ cosa=-\frac{1}{2}\\ a=120
другой угол равен 60 гр
ответ 60 и 120 гр