Если все числа равны, то они обязаны быть 0, а значит сумма не 20, т.е. в последовательности есть различные числа.
Все числа неотрицательны, т.к. они равны модулю разности.
Пусть а - наименьшее число на окружности, и b - следующее за ним по часовой стрелке, причем a<b. Т.е. последовательность имеет вид ...,a,b,... Тогда число перед а (т.е. соседнее против часовой стрелки) равно b-а, т.е.: ...,b-a,a,b,... Т.к. а было минимальным, то обязательно b-a≥a и, значит, перед b-a будет (b-a)-a=b-2a. Т.е. последовательность будет иметь вид ...,b-2a,b-a,a,b,... Т.к. b-2a≤b-a, то перед b-2a будет (b-a)-(b-2a)=a, т.е. будет ...,a,b-2a,b-a,a,b,...
Опять, повторяем рассуждение: т.к. а - минимальное, то b-2a≥a, т.е. перед а будет b-3a, а перед ним b-4a, а перед ним опять a, и т.д. Т.е. будет: ...,a), (b-4a, b-3a, a), (b-2a, b-a, a), (b, Я расставил скобки, чтобы было видно, что таким рассуждением мы каждый раз получаем тройку чисел (b-2ka, b-(2k-1)a, a), где k=1,..,10 (т.к. всего чисел 30). Но тогда последняя тройка при k=10 должна начинаться с b, т.е. b-20а=b, откуда a=0, а значит последовательность чисел на окружности имеет вид ...,(b,b,0),(b,b,0),(b,b,0),... Так как сумма всех чисел равна 20, то b=1, т.е. числа на окружности имеют вид ...(110)(110)(110)... Понятно. что наибольшее возможное значение суммы 5 подряд идущих чисел равно 4.
Все числа неотрицательны, т.к. они равны модулю разности.
Пусть а - наименьшее число на окружности, и b - следующее за ним по часовой стрелке, причем a<b. Т.е. последовательность имеет вид ...,a,b,... Тогда число перед а (т.е. соседнее против часовой стрелки) равно b-а, т.е.: ...,b-a,a,b,...
Т.к. а было минимальным, то обязательно b-a≥a и, значит, перед b-a будет (b-a)-a=b-2a. Т.е. последовательность будет иметь вид
...,b-2a,b-a,a,b,...
Т.к. b-2a≤b-a, то перед b-2a будет (b-a)-(b-2a)=a, т.е. будет
...,a,b-2a,b-a,a,b,...
Опять, повторяем рассуждение: т.к. а - минимальное, то b-2a≥a, т.е. перед а будет b-3a, а перед ним b-4a, а перед ним опять a, и т.д. Т.е.
будет: ...,a), (b-4a, b-3a, a), (b-2a, b-a, a), (b,
Я расставил скобки, чтобы было видно, что таким рассуждением мы каждый раз получаем тройку чисел (b-2ka, b-(2k-1)a, a), где k=1,..,10 (т.к. всего чисел 30). Но тогда последняя тройка при k=10 должна начинаться с b, т.е. b-20а=b, откуда a=0, а значит последовательность чисел на окружности имеет вид ...,(b,b,0),(b,b,0),(b,b,0),... Так как сумма всех чисел равна 20, то b=1, т.е. числа на окружности имеют вид
...(110)(110)(110)... Понятно. что наибольшее возможное значение суммы 5 подряд идущих чисел равно 4.
а) 48 = 40 + 8 - число сорок восемь
б) 159 = 100 + 50 + 9 - число сто пятьдесят девять
в) 2 945 = 2 000 + 900 + 40 + 5 - число две тысячи девятьсот сорок пять
г) 34 196 = 30 000 + 4 000 + 100 + 90 + 6 - число тридцать четыре тысячи сто девяносто шесть
д) 102 = 100 + 2 - число сто два
е) 150 = 100 + 50 - число сто пятьдесят
ж) 4 067 = 4 000 + 60 + 7 - число четыре тысячи шестьдесят семь
з) 10 504 = 10 000 + 500 + 4 - число десять тысяч пятьсот четыре
и) 6 401 = 6 000 + 400 + 1 - число шесть тысяч четыреста один
к) 5 060 = 5 000 + 60 - число пять тысяч шестьдесят
л) 12 007 = 12 000 + 7 - число двенадцать тысяч семь
м) 104 090 = 100 000 + 4 000 + 90 - число сто четыре тысячи девяносто