Пусть r радиус-вектор точки M(x; y; z). По условию |r| = 16.
Радиус-вектор точки M(x; y; z) составляет с осью OX угол 90° и поэтому находится полностью на плоскости OYZ и поэтому x=0.
Радиус-вектор точки M составляет с осью OY угол 150° (этот угол считается против часовой стрелки), что означает y<0 и составляет с осью OY угол по часовой стрелки 180°-150°=30° и составляет с осью OZ угол против часовой стрелки 180°-30°=60°. Тогда проекция радиуса-вектора на ось OY равна:
Делим все члены многочлена на 3/4 х^2 + 2*4/3x - 4/3 =0 x^2 + 8/3x - 4/3 =0 Надо найти такие числа, у которых произведение равно -4/3, а сумма -8/3. Сложно найти эти числа, воспользуясь теоремой Виета .
M(0; -8·√3; 8)
Пошаговое объяснение:
Пусть r радиус-вектор точки M(x; y; z). По условию |r| = 16.
Радиус-вектор точки M(x; y; z) составляет с осью OX угол 90° и поэтому находится полностью на плоскости OYZ и поэтому x=0.
Радиус-вектор точки M составляет с осью OY угол 150° (этот угол считается против часовой стрелки), что означает y<0 и составляет с осью OY угол по часовой стрелки 180°-150°=30° и составляет с осью OZ угол против часовой стрелки 180°-30°=60°. Тогда проекция радиуса-вектора на ось OY равна:
-y= |r|· cos30°= 16·√3/2=8·√3.
а проекция радиуса-вектора на ось OZ равна:
z= |r|· cos60°= 16·1/2=8.
х^2 + 2*4/3x - 4/3 =0
x^2 + 8/3x - 4/3 =0
Надо найти такие числа, у которых произведение равно -4/3, а сумма -8/3.
Сложно найти эти числа, воспользуясь теоремой Виета .
Решим привычным образом через дискриминант:
3/4x^2 + 2x - 1 =0
a=3/4
b=2
c=-1
D= b^2 - 4ac = 2*2 - 4*(3/4)*(-1) = 4 + 3 = 7 >0, 2 корня
Находим корни:
х1 = (-b+√D) / 2a = (-2 + √7) / (2*3/4) = (-2 + √7) * (2/3)
x2 = (-b-√D) / 2a = (-2 - √7) / (2*3/4) = (-2 - √7) * (2/3)
Таким образом корни уравнения:
(2/3) * (-2 + √7) и (2/3) *(-2 - √7)