Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}, где {\displaystyle m} — целое число, а {\displaystyle n} — натуральное[1]. К примеру {\displaystyle {\frac {2}{3}}}, где {\displaystyle m=2}, а {\displaystyle n=3}. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что целых чисел недостаточно и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
Пошаговое объяснение:
если представим, что это число х у , где х - число десятков, а у - число единиц, то можно составить систему двух уравнений с двумя неизвестными.
у - х = 3
3х - у = 5 Решая систему уравнений методом сложения получим
2х = 18
х = 4
Подставив значение х = 4 в первое уравнение системы получим
у - 4 = 3, откуда у = 7
ответ: получается число 47
вторая задача
обозначения те же. система выглядит следующим образом
х - у = 5
2х + у = 13
решая систему получим х = 9, у = 4
ответ: это двузначное число 94
Пошаговое объяснение:
Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}, где {\displaystyle m} — целое число, а {\displaystyle n} — натуральное[1]. К примеру {\displaystyle {\frac {2}{3}}}, где {\displaystyle m=2}, а {\displaystyle n=3}. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что целых чисел недостаточно и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.