Решение: Обозначим первое задуманное натуральное число за (а), тогда второе последовательное натуральное число равно (а+1) Согласно условия задачи, составим уравнение: (а)*(а+1) - (а+а+1)=209 а^2+a-2a-1=209 a^2-a-1-209=0 a^2-a-210=0 a1,2=(1+-D)/2*1 D=√(1-4*1*-210)=√(1+840)=√841=29 а1,2=(1+-29)/2 а1=(1+29)/2=30/2=15 - первое натуральное число а2=(1-29)/2=-28/2=-14 - не соответствует условию задачи, так как натуральное число не может быть отрицательным числом. Отсюда: первое натуральное число 15 второе последовательное натуральное число 15+1=16
_12л7л5л
12 0 0
7 0 5
7 5 0
2 5 5
2 7 3
9 0 3
9 3 0
4 3 5
4 7 1
11 0 1
11 1 0
6 1 5
6 6 0
Обозначим первое задуманное натуральное число за (а), тогда второе последовательное натуральное число равно (а+1)
Согласно условия задачи, составим уравнение:
(а)*(а+1) - (а+а+1)=209
а^2+a-2a-1=209
a^2-a-1-209=0
a^2-a-210=0
a1,2=(1+-D)/2*1
D=√(1-4*1*-210)=√(1+840)=√841=29
а1,2=(1+-29)/2
а1=(1+29)/2=30/2=15 - первое натуральное число
а2=(1-29)/2=-28/2=-14 - не соответствует условию задачи, так как натуральное число не может быть отрицательным числом.
Отсюда:
первое натуральное число 15
второе последовательное натуральное число 15+1=16
ответ: б) 15; 16