так как AB=CD то CD=4 а периметр ADC= AD+DC+AC=7+6+4=17см Прямая АВ - секущая при ВС и АД. При этом равные по условию ∠ВАД=∠АВС - внутренние накрестлежащие. Признак параллельных прямых Если внутренние накрест лежащие углы равны, то прямые параллельны. ⇒ АД параллельна ВС. Соединим А и С, Д и В. В четырехугольнике АВСД стороны АД и ВС параллельны и по условию равны. Если противоположные стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм. а )треугольник САД может быть равен ВДА только если четырехугольник АВСД - квадрат. б)∠ДВА =∠САВ как накрестлежащие при параллельных ВД и АС и секущей АВ. в) ∠ВАД=∠ВАС только в том случае, если АВСД - ромб. г) если О - точка пересечения СД и АВ, угол АОВ - развернутый и не может быть равен углу ВСА.
Чтобы найти НОД нескольких чисел, нужно разложить эти числа на множители и найти произведение их СОВМЕСТНЫХ множителей, взятых с НАИМЕНЬШИМ показателем степени.
38 = 2 * 19
48 = (2*2*2*2) * 3
102 = 2 * 3 * 17
НОД (38, 48,102) = 2 - наибольший общий делитель
50 = 2 * (5*5)
75 = 3 * (5*5)
250 = 2 * (5*5*5)
НОД (50,75,250) = (5*5) = 25 - наибольший общий делитель
Чтобы найти НОК нескольких чисел, нужно разложить эти числа на множители и найти произведение ВСЕХ множителей, взятых с НАИБОЛЬШИМ показателем степени.
то CD=4
а периметр ADC= AD+DC+AC=7+6+4=17см
Прямая АВ - секущая при ВС и АД.
При этом равные по условию ∠ВАД=∠АВС - внутренние накрестлежащие.
Признак параллельных прямых
Если внутренние накрест лежащие углы равны, то прямые параллельны.
⇒ АД параллельна ВС.
Соединим А и С, Д и В.
В четырехугольнике АВСД стороны АД и ВС параллельны и по условию равны.
Если противоположные стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм.
а )треугольник САД может быть равен ВДА только если четырехугольник АВСД - квадрат.
б)∠ДВА =∠САВ как накрестлежащие при параллельных ВД и АС и секущей АВ.
в) ∠ВАД=∠ВАС только в том случае, если АВСД - ромб.
г) если О - точка пересечения СД и АВ, угол АОВ - развернутый и не может быть равен углу ВСА.
Чтобы найти НОД нескольких чисел, нужно разложить эти числа на множители и найти произведение их СОВМЕСТНЫХ множителей, взятых с НАИМЕНЬШИМ показателем степени.
38 = 2 * 19
48 = (2*2*2*2) * 3
102 = 2 * 3 * 17
НОД (38, 48,102) = 2 - наибольший общий делитель
50 = 2 * (5*5)
75 = 3 * (5*5)
250 = 2 * (5*5*5)
НОД (50,75,250) = (5*5) = 25 - наибольший общий делитель
44 = (2*2) * 11
110 = 2 * 5 * 11
154 = 2 * 7 * 11
НОД (44, 110, 154) = 2 * 11 = 22 - наибольший общий делитель
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Чтобы найти НОК нескольких чисел, нужно разложить эти числа на множители и найти произведение ВСЕХ множителей, взятых с НАИБОЛЬШИМ показателем степени.
60 = (2*2) * 3 * 5
24 = (2*2*2) * 3
36 = (2*2) * (3*3)
НОК (60, 24, 36) = (2*2*2) * (3*3) * 5 = 360 - наименьшее общее кратное
36 = (2*2) * (3*3)
90 = 2 * (3*3) * 5
200 = (2*2*2) * (5*5)
НОК (36, 90, 200) = (2*2*2) * (3*3) * (5*5) = 1800 - наименьшее общее кратное
90 = 2 * (3*3) * 5
60 = (2*2) * 3 * 5
135 = (3*3*3) * 5
НОК (90, 60, 135) = (2*2) * (3*3*3) * 5 = 540 - наименьшее общее кратное
Пошаговое объяснение: