В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mssuslova1980
mssuslova1980
11.03.2022 04:22 •  Математика

Даны векторы a (6; -3; 6) и b (4; -2; 5) Найти косинус угла между векторами 1/3b и 3a.


Даны векторы a (6; -3; 6) и b (4; -2; 5) Найти косинус угла между век

Показать ответ
Ответ:
Besmertnay123
Besmertnay123
06.08.2020 16:25

Пошаговое объяснение:

cos\alpha =\frac{a*b}{|a||b|}

сперва сосчитаем вектора

1/3 b (4/3; -2/3; 5/3

3a (18; -9;18)

скалярное произведение

a*b = (18 *4 /3) + (-9)* (- 2/3)  + (18 *5/ 3)  = 24 + 6 + 30 = 60

теперь найдем длины векторов

|a| = \sqrt{a_{x} ^{2} +a_{y} ^{2}+a_{z} ^{2}} =

= √(324 + 81 + 324) = √729 = 27

|b| =  √(16/9 + 4/9 + 25/9) = √5

и косинус угла

cos \alpha = \frac{60}{27*\sqrt{5} } = \frac{4*\sqrt{5} }{9}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота