Вот 1) Ax + By + C = 0 Направляющий вектор этой прямой s={A,B}={2;-3}. Значит, нормальный вектор будет n={3;2} Вектор нормали перпендикулярный к даной прямой. Значит 3x + 2y + c = 0 По условию P(-5;13), откуда х=-5 и у=13. Подставим 3 * (-5) + 2* 13 + C = 0 -15 + 26 + C = 0 C = -11
Направляющий вектор этой прямой s={A,B}={2;-3}. Значит, нормальный вектор будет n={3;2}
Вектор нормали перпендикулярный к даной прямой. Значит
3x + 2y + c = 0
По условию P(-5;13), откуда х=-5 и у=13. Подставим
3 * (-5) + 2* 13 + C = 0
-15 + 26 + C = 0
C = -11
3x+2y-11=0
Найдем точку пересения этих прямых
{3x+2y-11=0 (1)
{2x-3y-3=0 (2)
(1)-(2)
{x + 5y - 8 = 0 ⇒ x=8-5y
{2x - 3y -3 = 0
2(8-5y) - 3y -3 = 0
16 - 10y - 3y - 3 =0
13 - 13 y = 0
y = 1
x=3
O(3;1)
Поскольку Q - симметрична точке Р, значит точка О - средина отрезка
3 = (-5+x)/2; ⇒ x=11
1=(13+y)/2 ⇒ y=-11
Q(11;-11) - ответ Вот 2)A(3;1;-4)
B(3;1;4)
C(-3;1;-4)
AC=V((-3-3)^2+(1-1)^2+(-4-(-4))^2)=V36=6
1,3,4.Хм...
Пусть abc - это нужное нам число, где a,b,c - это цифры сотен, десятков и единиц соответственно.
Следовательно, 315<abc<420;
a - эточно не 1. Следовательно, a - это либо 3, либо 4.
Если а=3, то b не может быть 1. Ведь 314<315.
Если a=4, то b не может быть 3. Ведь 431<420.
Что-то нет условий больше у задачи, значит, скорее всего, решается перебором.
Составим все возможные числа из 1, 3, 4 при описанных нами условиях.
341, 413.
Вот теперь выбери тот номер, который тебе подходит. (Ведь только 2 клетки для заполнения)