1. и , x∈R Проверка будет состоять в нахождении производной F'(x).
Что и требовалось показать.
2. и Найдём первообразную, подставим туда координаты точки М и найдём константу.
Итак, искомая первообразная такая:
3. 1) Дана парабола и прямая y = 0 (ось Ох). Найдём точки пересечения параболы с прямой.
Итак, парабола пересекает ось абсцисс в двух точках. А т.к. ветви параболы направлены вверх, то вершина параболы находится ниже оси Ох. Вот нам и надо найти площадь фигуры, ограниченной параболой и осью абсцисс между точками х= -3 и х= 2.
Площадь получилась отрицательной, т.к. фигура находится ниже оси абсцисс.
3. 2) Дана парабола и прямая . Найдём точки пересечения параболы с прямой.
Вершина параболы в точке (0; 1):
Это означает, что интегрированием параболы от минус 3 до плюс 3 мы найдём площадь под параболой до оси абсцисс. А нам надо найти площадь между заданными функциями. Поэтому находим площадь прямоугольника, ограниченного координатами по иксу от минус трёх до плюс трёх, а по игреку от 0 до 10. Эта площадь равна [3 - (-3)] * 10 = 60. А затем вычтем из площади прямоугольника площадь фигуры под параболой. Остаётся найти площадь этой фигуры:
Вот теперь можем вычислить искомую площадь 60 - 24 = 36.
Молча...)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Проверка будет состоять в нахождении производной F'(x).
Что и требовалось показать.
2. и
Найдём первообразную, подставим туда координаты точки М и найдём константу.
Итак, искомая первообразная такая:
3. 1) Дана парабола и прямая y = 0 (ось Ох).
Найдём точки пересечения параболы с прямой.
Итак, парабола пересекает ось абсцисс в двух точках. А т.к. ветви параболы направлены вверх, то вершина параболы находится ниже оси Ох. Вот нам и надо найти площадь фигуры, ограниченной параболой и осью абсцисс между точками х= -3 и х= 2.
Площадь получилась отрицательной, т.к. фигура находится ниже оси абсцисс.
3. 2) Дана парабола и прямая .
Найдём точки пересечения параболы с прямой.
Вершина параболы в точке (0; 1):
Это означает, что интегрированием параболы от минус 3 до плюс 3 мы найдём площадь под параболой до оси абсцисс. А нам надо найти площадь между заданными функциями. Поэтому находим площадь прямоугольника, ограниченного координатами по иксу от минус трёх до плюс трёх, а по игреку от 0 до 10. Эта площадь равна [3 - (-3)] * 10 = 60.
А затем вычтем из площади прямоугольника площадь фигуры под параболой. Остаётся найти площадь этой фигуры:
Вот теперь можем вычислить искомую площадь 60 - 24 = 36.