Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
если векторы ав и ас коллинеарны, то точки a, в и с лежат на одной прямой, а если не коллинеарны, то точки a, в и с не лежат на одной прямой. найдем координаты этих векторов: ав { — 8; 11; —7}, ac{24; —33; 21}.
очевидно, ас = —3ав, поэтому векторы ав и ас коллинеарны, и, следовательно, точки л, в и с лежат на одной прямой.
а) если векторы ab и ac коллинеарны, то точки а, в и с лежат на одной прямой, а если не коллинеарны, то точки а, в и с не лежат на одной прямой. вычислим коорди
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33
если векторы ав и ас коллинеарны, то точки a, в и с лежат на одной прямой, а если не коллинеарны, то точки a, в и с не лежат на одной прямой. найдем координаты этих векторов: ав { — 8; 11; —7}, ac{24; —33; 21}.
очевидно, ас = —3ав, поэтому векторы ав и ас коллинеарны, и, следовательно, точки л, в и с лежат на одной прямой.
а) если векторы ab и ac коллинеарны, то точки а, в и с лежат на одной прямой, а если не коллинеарны, то точки а, в и с не лежат на одной прямой. вычислим коорди