Если сотрудников 102, то может выйти так, что у 101 сотрудника зарплата 1 тугрик, а у оставшегося - все остальные тугрики. В таком случае зарплату раздать не выйдет, так как есть только 100 монет по 1 тугрику.
Пусть сотрудников 101 или меньше. Упорядочим их по убыванию оставшегося размера выплаты. Будем распределять монеты так: Заплатим первому в очереди 1 монетой максимального номинала из имеющихся, а затем поставим его в очередь согласно оставшемуся размеру выплаты.
Почему это сработает: если максимальный номинал монеты x >= 3, то осталось выплатить не меньше, чем 100*(1+2+3+...+(x-1))+x = 50x^2-49x, у первого в очереди остаток к выплате не меньше, чем (50x^2-49x)/101 >= x. Если x = 2, то первому в очереди надо выплатить не меньше 2 тугриков, поскольку в противном случае сумма всех монет была бы не больше 101 (не более 101 человека, каждому надо выплатить не более 1 тугрика), но сумма всех монет не меньше, чем 100*1 + 2 = 102. Если x = 1, то очевидно, выплатить получится.
{ x - 2y + 3z = -3
{ 7x + y - z = 10
Определитель Delta
|2 1 -1|
|1 -2 3|=2(-2)(-1)+1*1(-1)+7*1*3-7(-2)(-1)-1*1(-1)-1*3*2=4-1+21-14+1-6=5
|7 1 -1|
Определитель Delta(x)
|5 1 -1|
|-3 -2 3|=5(-2)(-1)+1(-3)(-1)+1*10*3-10(-2)(-1)-1(-3)(-1)-1*3*5=5
|10 1 -1|
x = Delta(x) / Delta = 5/5 = 1
Определитель Delta(y)
|2 5 -1|
|1 -3 3|=2(-3)(-1)+1*10(-1)+7*5*3-7(-3)(-1)-1*5(-1)-10*3*2=25
|7 10 -1|
y = Delta(y) / Delta = 25/5 = 5
Определитель Delta(z)
|2 1 5|
|1 -2 -3|=2(-2)*10+1*1*5+7*1(-3)-7(-2)*5-1*1*10-1*2(-3)=10
|7 1 10|
z = Delta(z) / Delta = 10/5 = 2
ответ: (1, 5, 2)
Пусть сотрудников 101 или меньше. Упорядочим их по убыванию оставшегося размера выплаты. Будем распределять монеты так:
Заплатим первому в очереди 1 монетой максимального номинала из имеющихся, а затем поставим его в очередь согласно оставшемуся размеру выплаты.
Почему это сработает: если максимальный номинал монеты x >= 3, то осталось выплатить не меньше, чем 100*(1+2+3+...+(x-1))+x = 50x^2-49x, у первого в очереди остаток к выплате не меньше, чем (50x^2-49x)/101 >= x.
Если x = 2, то первому в очереди надо выплатить не меньше 2 тугриков, поскольку в противном случае сумма всех монет была бы не больше 101 (не более 101 человека, каждому надо выплатить не более 1 тугрика), но сумма всех монет не меньше, чем 100*1 + 2 = 102.
Если x = 1, то очевидно, выплатить получится.