Пошаговое объяснение:
1) 2(log4(x))^2=5log4(x)-2 ОДЗ: x>0
Пусть log4(x)=t, тогда 2t^2=5t-2
2t^2-5t+2=0
t1=0.5
t2=2
Обратная замена: log4(x)=0,5 или log4(x)=2
x=4^0,5 или x=4^2
x=2 или x=16
Все корни удовлетворяют ОДЗ.
2) (log2(x))^2-(log2(x))^7+12=0 ОДЗ: x>0
(log2(x))^2-7log2(x)+12=0 (не появляется |x|, поскольку степень нечетная)
Пусть log2(x)=t, тогда t^2-7t+12=0
t1=3
t2=4
Обратная замена:
log2(x)=3 или log2(x)=4
x=2^3 или x=2^4
x=8 или x=16
3) (log5(x))^2=9 ОДЗ: x>0
Извлечем квадрат из обеих частей (также можно перенести девятку в левую часть и разложить всю левую часть на множители по формуле разности квадратов):
log5(x)=3 или log5(x)=-3
x=5^3 или x=5^-3
x=125 или x=1\125
Решим неравенство методом интервалов.
Для начала разложим числитель на множители. Он представлен квадратным уравнением, его можно разложить по следующей формуле:
Где x₁ и x₂ - решения квадратного уравнения .
Получаем следующее неравенство:
Введем функцию
Найдем ее область определения:
(знаменатель дроби не может равняться нулю).
Найдем значения x, при которых функция равна нулю:
или
Проверяем, подходит ли под область определения (да, подходит).
Затем рисуем числовую прямую, обозначаем на ней точки -2 и 7, а также выколотую точку 1.
Эти три точки разделили числовую прямую на 4 интервала, для каждого числа внутри конкретного интервала знак функции будет одинаковым.
Будем брать по одному любому числу для каждого интервала и проверять знак функции.
Возьмем число 8:
Количество выражений меньше нуля нечетное, поэтому у функции будет знак меньше нуля.
Возьмем число 3:
Количество выражений меньше нуля четное, поэтому у функции будет знак больше нуля.
Возьмем число 0:
Возьмем число -3:
Итого у нас получилось два интервала, в которых функция принимает значение больше нуля:
Пошаговое объяснение:
1) 2(log4(x))^2=5log4(x)-2 ОДЗ: x>0
Пусть log4(x)=t, тогда 2t^2=5t-2
2t^2-5t+2=0
t1=0.5
t2=2
Обратная замена: log4(x)=0,5 или log4(x)=2
x=4^0,5 или x=4^2
x=2 или x=16
Все корни удовлетворяют ОДЗ.
2) (log2(x))^2-(log2(x))^7+12=0 ОДЗ: x>0
(log2(x))^2-7log2(x)+12=0 (не появляется |x|, поскольку степень нечетная)
Пусть log2(x)=t, тогда t^2-7t+12=0
t1=3
t2=4
Обратная замена:
log2(x)=3 или log2(x)=4
x=2^3 или x=2^4
x=8 или x=16
Все корни удовлетворяют ОДЗ.
3) (log5(x))^2=9 ОДЗ: x>0
Извлечем квадрат из обеих частей (также можно перенести девятку в левую часть и разложить всю левую часть на множители по формуле разности квадратов):
log5(x)=3 или log5(x)=-3
x=5^3 или x=5^-3
x=125 или x=1\125
Все корни удовлетворяют ОДЗ.
Пошаговое объяснение:
Решим неравенство методом интервалов.
Для начала разложим числитель на множители. Он представлен квадратным уравнением, его можно разложить по следующей формуле:
Где x₁ и x₂ - решения квадратного уравнения .
Получаем следующее неравенство:
Введем функцию
Найдем ее область определения:
(знаменатель дроби не может равняться нулю).
Найдем значения x, при которых функция равна нулю:
или
или
Проверяем, подходит ли под область определения (да, подходит).
Затем рисуем числовую прямую, обозначаем на ней точки -2 и 7, а также выколотую точку 1.
Эти три точки разделили числовую прямую на 4 интервала, для каждого числа внутри конкретного интервала знак функции будет одинаковым.
Будем брать по одному любому числу для каждого интервала и проверять знак функции.
Возьмем число 8:
Количество выражений меньше нуля нечетное, поэтому у функции будет знак меньше нуля.
Возьмем число 3:
Количество выражений меньше нуля четное, поэтому у функции будет знак больше нуля.
Возьмем число 0:
Количество выражений меньше нуля нечетное, поэтому у функции будет знак меньше нуля.
Возьмем число -3:
Количество выражений меньше нуля четное, поэтому у функции будет знак больше нуля.
Итого у нас получилось два интервала, в которых функция принимает значение больше нуля: