Решение Формула для нахождения площади ортогональной проекции фигуры: S(орт)=cosα*S(фигуры), где α - угол между плоскостями,в одной из которых находится сама фигура, а во второй - ее проекция. По формуле Герона найдём сначала площадь самого треугольника: S(тр)=, где р-полупериметр треугольника, a,b,c-его стороны. Отсюда площадь равна: S(тр)=√(9*4*3*2)=6√6 cм² Теперь найдем косинус угла между плоскостями. Как сказано из условия, этот угол равен большему из углов этого треугольника. Известно, что напротив большей стороны лежит больший угол. В нашем случае большая сторона АС=7см, а значит наибольший угол треугольника - ∠В. Из теоремы косинусов найдем косинус этого угла: АС²=АВ²+ВС²-2*АВ*ВС*cos∠B ⇔ cos∠B=(АВ²+ВС²-АС²)/2*АВ*СВ=0.2 Т.к. ∠В=∠α(из условия), то площадь проекции этого треугольника равна: S(орт)=cos∠B*S(тр)=0.2*6√6=(6√6)/5 cм²
Пусть задуманные числа а (нечетное) и b (четное). Тогда величина 5*(a-1)/2+(b-2)/2=(5a+b-7)/2 пробегает все числа от 0 до 24, когда а пробегает 1,3,5,7,9 и b пробегает 2,4,6,8,10, причем каждое число по одному разу. Это так, потому что число q=(a-1)/2 пробегает числа 0,1,2,3,4, когда а пробегает 1,3,5,7,9. И, аналогично, число r=(b-2)/2 пробегает числа 0,1,2,3,4, когда b пробегает 2,4,6,8,10. Т.е. величина с=(5a+b-7)/2 равна 5q+r. Она и задает все числа из интервала от 0 до 24 включительно. И каждое по одному разу. поэтому вопросы задаем методом половинного деления: Т.е. делим интервал [0,24] пополам и вопросы задаем типа 1) Число (5a+b-7)/2 меньше 12? 2) Если ответ будет "да", то 2-ым вопросом задаем: "Число (5a+b-7)/2 меньше 6?", если будет ответ "нет", то вопрос будет "число (5a+b-7)/2 меньше 18?" 3) Потом в зависимости от предыдущего ответа каждый раз делим интервал, в котором оказалось число, пололам. Так за 5 вопросов мы однозначно определим число (5a+b-7)/2. ну а по нему обратно можно восстановить а и b. А именно, если найдено число c=(5a+b-7)/2, то делим c на 5 с остатком. Как раз находим остаток r, а частное q, тогда a=2q+1, b=2r+2. Ну к примеру. Допустим задуманы числа 3 и 8. Вопросы будет такими 1) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<12? ответ будет "да", т.к. (5a+b-7)/2=(15+8-7)/2=8. Следующий вопрос: 2) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<6? ответ "нет". Т.е. мы знаем, что c=(5a+b-7)/2 находится от 6 до 11 включительно. Дальше берем приблизительно середину этого интервала (например 9) и спрашиваем: 3) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<9? ответ "да". Т.е. мы знаем, что (5a+b-7)/2 находится от 6 до 8. 4) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<7? ответ "нет". И мы понимаем, что (5a+b-7)/2 равно 7 или 8? 5) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<8? ответ "нет". Т,е. (5a+b-7)/2 равно 8. Всё. Теперь делим 8 на 5 с остаком получаем частное q=1 и остаток r=3. Значит а=2q+1=3 и b=2r+2=2*3+2=8. Т.е. были задуманы 3 и 8.
ΔАВС
АВ=5см
ВС=6см
АС=7см
--------
S(орт)-?
Решение
Формула для нахождения площади ортогональной проекции фигуры:
S(орт)=cosα*S(фигуры),
где α - угол между плоскостями,в одной из которых находится сама фигура, а во второй - ее проекция. По формуле Герона найдём сначала площадь самого треугольника:
S(тр)=, где р-полупериметр треугольника, a,b,c-его стороны. Отсюда площадь равна:
S(тр)=√(9*4*3*2)=6√6 cм²
Теперь найдем косинус угла между плоскостями. Как сказано из условия, этот угол равен большему из углов этого треугольника. Известно, что напротив большей стороны лежит больший угол. В нашем случае большая сторона АС=7см, а значит наибольший угол треугольника - ∠В. Из теоремы косинусов найдем косинус этого угла:
АС²=АВ²+ВС²-2*АВ*ВС*cos∠B ⇔ cos∠B=(АВ²+ВС²-АС²)/2*АВ*СВ=0.2
Т.к. ∠В=∠α(из условия), то площадь проекции этого треугольника равна:
S(орт)=cos∠B*S(тр)=0.2*6√6=(6√6)/5 cм²
ответ: S(орт)=(6√6)/5 см²
величина 5*(a-1)/2+(b-2)/2=(5a+b-7)/2 пробегает все числа от 0 до 24, когда а пробегает 1,3,5,7,9 и b пробегает 2,4,6,8,10, причем каждое число по одному разу. Это так, потому что число q=(a-1)/2 пробегает числа 0,1,2,3,4, когда а пробегает 1,3,5,7,9. И, аналогично, число r=(b-2)/2 пробегает числа 0,1,2,3,4, когда b пробегает 2,4,6,8,10. Т.е. величина с=(5a+b-7)/2 равна 5q+r. Она и задает все числа из интервала от 0 до 24 включительно. И каждое по одному разу.
поэтому вопросы задаем методом половинного деления: Т.е. делим интервал [0,24] пополам и вопросы задаем типа
1) Число (5a+b-7)/2 меньше 12?
2) Если ответ будет "да", то 2-ым вопросом задаем:
"Число (5a+b-7)/2 меньше 6?", если будет ответ "нет", то вопрос будет "число (5a+b-7)/2 меньше 18?"
3) Потом в зависимости от предыдущего ответа каждый раз делим интервал, в котором оказалось число, пололам. Так за 5 вопросов мы однозначно определим число (5a+b-7)/2. ну а по нему обратно можно восстановить а и b.
А именно, если найдено число c=(5a+b-7)/2, то делим c на 5 с остатком. Как раз находим остаток r, а частное q, тогда a=2q+1, b=2r+2.
Ну к примеру. Допустим задуманы числа 3 и 8.
Вопросы будет такими
1) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<12?
ответ будет "да", т.к. (5a+b-7)/2=(15+8-7)/2=8. Следующий вопрос:
2) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<6?
ответ "нет". Т.е. мы знаем, что c=(5a+b-7)/2 находится от 6 до 11 включительно.
Дальше берем приблизительно середину этого интервала (например 9) и спрашиваем:
3) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<9?
ответ "да". Т.е. мы знаем, что (5a+b-7)/2 находится от 6 до 8.
4) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<7?
ответ "нет". И мы понимаем, что (5a+b-7)/2 равно 7 или 8?
5) Если нечетное число равно а, а четное число равно b, то число (5a+b-7)/2<8?
ответ "нет". Т,е. (5a+b-7)/2 равно 8.
Всё. Теперь делим 8 на 5 с остаком получаем частное q=1 и остаток r=3.
Значит а=2q+1=3 и b=2r+2=2*3+2=8. Т.е. были задуманы 3 и 8.