так как AB=CD то CD=4 а периметр ADC= AD+DC+AC=7+6+4=17см Прямая АВ - секущая при ВС и АД. При этом равные по условию ∠ВАД=∠АВС - внутренние накрестлежащие. Признак параллельных прямых Если внутренние накрест лежащие углы равны, то прямые параллельны. ⇒ АД параллельна ВС. Соединим А и С, Д и В. В четырехугольнике АВСД стороны АД и ВС параллельны и по условию равны. Если противоположные стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм. а )треугольник САД может быть равен ВДА только если четырехугольник АВСД - квадрат. б)∠ДВА =∠САВ как накрестлежащие при параллельных ВД и АС и секущей АВ. в) ∠ВАД=∠ВАС только в том случае, если АВСД - ромб. г) если О - точка пересечения СД и АВ, угол АОВ - развернутый и не может быть равен углу ВСА.
От пристани А к пристани Б вниз по течению реки стартует катер, а одновременно с ним по берегу – велосипедист, который движется неравномерно. Расстояние между пристанями 6 км.
Капитану катера передается информация о скорости велосипедиста, и он, моментально реагируя, поддерживает скорость катера относительно воды вдвое больше скорости велосипедиста. Через 30 мин катер доплыл до пристани Б. Определите скорость течения реки, если к этому моменту велосипедист проехал всего лишь 1/3 пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
2х - скорость катера.
у - скорость течения реки.
(2х + у) - скорость катера по течению.
6 км - расстояние катера.
6/(2х + у) - время катера в пути.
1/3 пути = 2 км - расстояние велосипедиста.
Время в пути катера и велосипедиста одинаковое, равно 0,5 часа.
По условию задачи система уравнений:
х * 0,5 = 2
6/(2х + у) = 0,5
Вычислить х в первом уравнении:
0,5х = 2
х = 2/0,5
х = 4 (км/час) - скорость велосипедиста.
Подставить значение х во второе уравнение и вычислить у:
6/(2*4 + у) = 0,5
6/(8 + у) = 0,5
Умножить уравнение на (8 + у), чтобы избавиться от дробного выражения:
то CD=4
а периметр ADC= AD+DC+AC=7+6+4=17см
Прямая АВ - секущая при ВС и АД.
При этом равные по условию ∠ВАД=∠АВС - внутренние накрестлежащие.
Признак параллельных прямых
Если внутренние накрест лежащие углы равны, то прямые параллельны.
⇒ АД параллельна ВС.
Соединим А и С, Д и В.
В четырехугольнике АВСД стороны АД и ВС параллельны и по условию равны.
Если противоположные стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм.
а )треугольник САД может быть равен ВДА только если четырехугольник АВСД - квадрат.
б)∠ДВА =∠САВ как накрестлежащие при параллельных ВД и АС и секущей АВ.
в) ∠ВАД=∠ВАС только в том случае, если АВСД - ромб.
г) если О - точка пересечения СД и АВ, угол АОВ - развернутый и не может быть равен углу ВСА.
В решении.
Пошаговое объяснение:
От пристани А к пристани Б вниз по течению реки стартует катер, а одновременно с ним по берегу – велосипедист, который движется неравномерно. Расстояние между пристанями 6 км.
Капитану катера передается информация о скорости велосипедиста, и он, моментально реагируя, поддерживает скорость катера относительно воды вдвое больше скорости велосипедиста. Через 30 мин катер доплыл до пристани Б. Определите скорость течения реки, если к этому моменту велосипедист проехал всего лишь 1/3 пути.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
2х - скорость катера.
у - скорость течения реки.
(2х + у) - скорость катера по течению.
6 км - расстояние катера.
6/(2х + у) - время катера в пути.
1/3 пути = 2 км - расстояние велосипедиста.
Время в пути катера и велосипедиста одинаковое, равно 0,5 часа.
По условию задачи система уравнений:
х * 0,5 = 2
6/(2х + у) = 0,5
Вычислить х в первом уравнении:
0,5х = 2
х = 2/0,5
х = 4 (км/час) - скорость велосипедиста.
Подставить значение х во второе уравнение и вычислить у:
6/(2*4 + у) = 0,5
6/(8 + у) = 0,5
Умножить уравнение на (8 + у), чтобы избавиться от дробного выражения:
6 = 0,5 * (8 + у)
6 = 4 + 0,5у
0,5у = 2
у = 2/0,5
у = 4 (км/час) - скорость течения реки.
Проверка:
2 : 4 = 0,5 (часа) - время велосипедиста, верно.
6 : (2 * 4 + 4) = 6 : 12 = 0,5 (часа) - время катера, верно.