В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Дианп11
Дианп11
26.08.2022 03:51 •  Математика

Диагонали вт и ср правильноrо шестиугольника ются в точке о. площадь четырехуrолыика abco равна 18.5 сма вычислите расстояние между центрами окружностей, вписанных в треугольники всо и отр.

Показать ответ
Ответ:
gtgcfgsg6567
gtgcfgsg6567
03.10.2020 13:01
Обозначим вершины 6-угольника А, В, С, Е, Р, Т. Его 3 диагонали пересекаются в точке О и делят 6-угольник на 6 равных равносторонних треугольников. Четырехугольник АВСО состоит из 2 таких треугольников. Следовательно, площадь каждого треугольника S = S_{ABCO} [/tex] /2.
Площадь равностороннего треугольника, как известно, равна
S = \sqrt{3} * a^{2} / 4
Поэтому сторона треугольника
a =2 * \sqrt{S} / \sqrt[4]{3}
В равностороннем треугольнике центр вписанной окружности совпадает с точной пересечения его высот, биссектрис и медиан. Медианы в точке пересечения, как известно, делятся в соотношении 2:1, считая от вершины.
В сою очередь, медианы (они же высоты) равносторонних треугольников равны m = a * Sin60 = a\sqrt{3} /2
С учетом всего изложенного расстояние L между центрами вписанных окружностей будет равно:
L = (2/3)*2*m =(4/3) * a\sqrt{3} /2 =
4\sqrt{Sabco} / \(sqrt{6} * \sqrt[4]{3} = 5,34

 
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота