Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.
ответ:0,94.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.
Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49