ДАНО c = 5 см - образующая конуса D = 4 см - диаметр основания. r= 1 см - диаметр шарика. НАЙТИ N =? - число шариков. РЕШЕНИЕ Объем конуса по высоте и радиусу основания по формуле: V = 1/3*π*R²*H Находим высоту конуса - H по теореме Пифагора. b = R = D/2 = 4/2 = 2 см - 1) a² = 5² - 2² = 25 - 4 = 21 2) H = a = √21 - высота конуса. Объем конуса 3) V1 = 1/3*π*4*√21= 4/3*√21*π см³ - объем конуса превращаем в шарики. Объем шара по формуле - R = 1. V2 = 4/3*π*R³ = 4/3*π Находим число полученных шариков - делением. N = V1 : V2 = √21 ≈ 4.6 ≈ 4 шт - шариков - ОТВЕТ И еще 0,58 шарика останется.
y' = 4*(x*e^2x)' =
4*( x' * e^2x + x*(e^2x)' ) =
4*( 1 * e^2x + x*(e^2x)*(2x)' ) =
4*( e^2x + x*(e^2x)*2 ) =
4 * e^2x + x*(e^2x)*8 =
4 * e^2x + 8 * x * e^2x
Б) y=ln (tg^2 (x/6))
y' = 1/tg^2 (x/6) * (tg^2 (x/6))' =
1/tg^2 (x/6) * 2*(tg^(2-1) (x/6)) * (tg (x/6))' =
1/tg^2 (x/6) * 2*(tg^1 (x/6)) * (tg (x/6))' =
1/tg^2 (x/6) * 2*(tg (x/6)) * (1/cos^2 (x/6)) * (x/6)' =
1/tg (x/6) * 2 * (1/cos^2 (x/6)) * (x/6)' =
1/tg (x/6) * 2 * (1/(cos^2 (x/6)) ) * (1/6) =
(2/6) * 1/tg (x/6) * (1/(cos^2 (x/6)) )=
(1/3) * 1/tg (x/6) * (1/(cos^2 (x/6)) )=
(1/3) * (cos (x/6)/sin (x/6)) * (1/(cos^2 (x/6)) )=
(1/3) * (1/sin (x/6)) * (1/(cos (x/6)) )=
(1/3) * (1/( (sin (x/6)) * (cos (x/6)) ) )=
(1/3) * ( 1/( (1/2)*sin(2x/6) ) ) =
(1/3) * (2/(sin(2x/6) ) ) =
(1/3) * (2/(sin(x/3) ) ) =
(2/3) * (1/(sin(x/3) ) ) =
2 / (3*sin(x/3))
c = 5 см - образующая конуса
D = 4 см - диаметр основания.
r= 1 см - диаметр шарика.
НАЙТИ
N =? - число шариков.
РЕШЕНИЕ
Объем конуса по высоте и радиусу основания по формуле:
V = 1/3*π*R²*H
Находим высоту конуса - H по теореме Пифагора.
b = R = D/2 = 4/2 = 2 см -
1) a² = 5² - 2² = 25 - 4 = 21
2) H = a = √21 - высота конуса.
Объем конуса
3) V1 = 1/3*π*4*√21= 4/3*√21*π см³ - объем конуса превращаем в шарики.
Объем шара по формуле - R = 1.
V2 = 4/3*π*R³ = 4/3*π
Находим число полученных шариков - делением.
N = V1 : V2 = √21 ≈ 4.6 ≈ 4 шт - шариков - ОТВЕТ
И еще 0,58 шарика останется.