(1) 3х²у+3ху²=90(обе части нижнего уравнения умножили на 3)
(2) сложив почленно верхнее уравнение х³+у³=35 с уравнением (1), получим:
х³+3х²у+3ху²+у³=125 или (х+у)³=125 или х+у=√125 или х+у=5 (беру для простоты только положительные корни, с отрицательными будет такой же алгоритм решения!)
(3) далее, преобразуем уравнение (1) как 3ху(х+у)=90 или ху(х+у)=30.
Но у нас ранее получено, что х+у=5, т.е ху·5=30 или ху= 6.
(4) получили новую систему:
║х+у=5
║ху=6
Значит х=5-у, отсюда (5-у)·у=6, далее у²-5у+6=0 (корни этого уравнения 3 и 2. Но я для упрощая для быстроты, что конечно, недопустимо, беру только один корень 3) Получил у=3, тогда х=5-3=2.
Рассмотрим дробь 2/(5+ b²). Дробь больше 0, когда её числитель и знаменатель одного знака. 2> 0, значит знаменатель тоже должен быть больше 0. Докажем, что
5+ b²>0,
b²> -5 (квадрат числа всегда больше 0 или равен 0), ч.и т.д.
(1) 3х²у+3ху²=90(обе части нижнего уравнения умножили на 3)
(2) сложив почленно верхнее уравнение х³+у³=35 с уравнением (1), получим:
х³+3х²у+3ху²+у³=125 или (х+у)³=125 или х+у=√125 или х+у=5 (беру для простоты только положительные корни, с отрицательными будет такой же алгоритм решения!)
(3) далее, преобразуем уравнение (1) как 3ху(х+у)=90 или ху(х+у)=30.
Но у нас ранее получено, что х+у=5, т.е ху·5=30 или ху= 6.
(4) получили новую систему:
║х+у=5
║ху=6
Значит х=5-у, отсюда (5-у)·у=6, далее у²-5у+6=0 (корни этого уравнения 3 и 2. Но я для упрощая для быстроты, что конечно, недопустимо, беру только один корень 3) Получил у=3, тогда х=5-3=2.
ответ(неполный): у=3, х=2
Желаю всем здоровья и удачи!
Пошаговое объяснение:
Пошаговое объяснение:
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) > 0 - доказать
Приведём дроби к общему знаменателю 25-b⁴, т.к.
25-b⁴ = (5+ b²) (5-b²)
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) =
= 10/ (25-b⁴) + 1(5-b²)/ (5+ b²)(5-b²) - 1(5+ b²)/ (5-b²)(5+ b²) =
= 10/ (25-b⁴) + (5-b²)/ (25-b⁴) - (5+ b²)/ (25-b⁴) =
= (10 + (5-b²) - (5+ b²))/ (25-b⁴) = (10 + 5-b² - 5- b²)/ (25-b⁴) =
= (10 -2b² ) / (25-b⁴) = 2(5-b²)/ (5-b²)(5+ b²) = 2/(5+ b²)
Рассмотрим дробь 2/(5+ b²). Дробь больше 0, когда её числитель и знаменатель одного знака. 2> 0, значит знаменатель тоже должен быть больше 0. Докажем, что
5+ b²>0,
b²> -5 (квадрат числа всегда больше 0 или равен 0), ч.и т.д.