Имеем три числа,подряд идущих, причем последнее число нечетно. Если первое число нечетное, то и третье число нечетное, а значит и сумма этих чисел делится на первое число. Возьмем числа 1,2,3. Сумма 1+2+3=6 , Шесть делится на 1 ( первое число). Возьмем дальше 2+3+4=9 , 9 на 2 не делится . Дальше 3+4+5=12, 12 делится на 3. 4+5+6=15 , 15 на 4 не делится . Дальше 5+6+7=18, 18 на 5 не делится . далее 7+8+9=24, а 24 на 7 не делится. Значит последовательность будет из 3 чисел. : 1,2,3 или 3,4,5.
По условию сумма каждых трёх подряд идущих чисел делится нацело на первое число этой тройки. Пусть первым натуральным числом будет M. Тогда суммой трёх подряд идущих чисел будет
S= M + (M + 1) + (M + 2) = 3·M + 3.
Это число делится на на первое число этой тройки, то есть на M:
S : M = (3·M + 3) : M = 3 + 3/M.
Чтобы это число было целым число M должен быть делителем 3. А таких натуральных чисел всего два: 1 и 3.
Пусть M = 1. Получим последовательных натуральных чисел
1, 2, 3 и последнее число строки нечётно.
Пусть M = 3. Получим последовательных натуральных чисел
Пошаговое объяснение:
Имеем три числа,подряд идущих, причем последнее число нечетно. Если первое число нечетное, то и третье число нечетное, а значит и сумма этих чисел делится на первое число. Возьмем числа 1,2,3. Сумма 1+2+3=6 , Шесть делится на 1 ( первое число). Возьмем дальше 2+3+4=9 , 9 на 2 не делится . Дальше 3+4+5=12, 12 делится на 3. 4+5+6=15 , 15 на 4 не делится . Дальше 5+6+7=18, 18 на 5 не делится . далее 7+8+9=24, а 24 на 7 не делится. Значит последовательность будет из 3 чисел. : 1,2,3 или 3,4,5.
3
Пошаговое объяснение:
По условию сумма каждых трёх подряд идущих чисел делится нацело на первое число этой тройки. Пусть первым натуральным числом будет M. Тогда суммой трёх подряд идущих чисел будет
S= M + (M + 1) + (M + 2) = 3·M + 3.
Это число делится на на первое число этой тройки, то есть на M:
S : M = (3·M + 3) : M = 3 + 3/M.
Чтобы это число было целым число M должен быть делителем 3. А таких натуральных чисел всего два: 1 и 3.
Пусть M = 1. Получим последовательных натуральных чисел
1, 2, 3 и последнее число строки нечётно.
Пусть M = 3. Получим последовательных натуральных чисел
3, 4, 5 и последнее число строки нечётно.
Значит, в строке всего 3 числа.