Каждая команда провела 4 игры. Ясно, что первая команда один раз сыграла вничью, а остальные игры проиграла. Вторая имеет две ничьи и два поражения. Третья команда пять очков на одних ничьих набрать не могла, стало быть, она один раз выиграла, кроме того, у неё две ничьи и поражение. Четвёртая команда победила два раза (если бы один, то ей пришлось бы набрать в трёх играх на одних ничьих 4 очка, что невозможно) . Также у этой команды есть ничья и поражение. В итоге первые четыре команды выиграли 3 раза, а проиграли 7 раз. Однако число побед должно равняться числу поражений. Значит, 4 раза они проиграли пятой команде, и у той 12 очков. Нетрудно привести пример турнира, где такое распределение очков возможно. Пусть пятая команда выиграла у всех, четвёртая - у первой и второй, третья - у первой, а все остальные игры закончились вничью. Тогда у каждой команды будет названное число очков.
7
Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC
4-4*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
4-4*CM*cos120=100-20*CM*cos60
4-4*CM*(-1/2)=100-20*CM*1/2
4+2*CM=100-10*CM
12*CM=96
СМ=8
ответ: 8