Например можно придумать игру-захват флага. Все дети разделяются на две команды-девочки и мальчики. У девочек оожен быть флаг,так же и у мальчиков.У каждой команды должно быть своё место. Если дети пробрались на базу своих противников то они должны хоть как то забрать их флаг.Но противники могут поймать своих соперников,и они должны стоять как звезда.Если его друзья которые в их команде тронут ребёнка то он может бегать дальше.У каждой команды должне быть охранник (ребёнок) который должен защищать свой флаг
y=x²-8x+15 Нужно найти вершину данной параболы, т.е. нужно найти координату точки которая состоит из x и y. Чтобы найти x₀, нужно применить формулу x₀=, в данном примере a=1; b=-8; c=15; x₀=, теперь нужно найти точку по y, для этого получившийся x₀ подставляем в функцию, тем самым найдём y₀. y₀=x²₀-8x₀+15=4²-8*4+15=16-32+15=-1. Мы нашли координату вершины параболы (4;-1) в этой точке начинается парабола, то есть просто ставим там точку (по x=4 и по y=-1), и через эту точку мысленно проводим ординату, и строим обычную параболу
y=x²-8x+15 Тут будем применять Метод выделения полного квадрата, но к этому методу плюсом нужно знать Формулы сокращённого умножения... y=x²-8x+15 - тут видим формулу Квадрат разности (a-b)²=a²-2ab+b² нам нужно свернуть формулу к виду (a-b)² из функции y=x²-8x+15 => мы видим что a=x, теперь нам нужно определить чему же равно b, для этого расписываем 2ab => y=x²-8x+15=x²-2xb+15, теперь из этого 2xb должно получиться 8x, то есть нужно 2x*4, т.е. b=4 y=x²-2x*4+15, но последнее число должно ровняться 16, т.к. по формуле (a-b)²=a²-2ab+b², b=4, то есть b²=16, но в функции 15, до 16 не хватает 1, мы её добавляем, а затем отнимаем, т.е. если +1 добавим и отнимим этот самый +1 ничего не измениться. y=x²-2x*4+15=x²-2x*4+15+1-1. Добавив 1 и обратно отняв её функция не поменялась. теперь чтобы свернуть к виду (a-b)², нам нужна 16, то есть приплюсовываем к 15+1-1=16-1, только плюсуем обратно не отнимаем!! y=x²-2x*4+15=x²-2x*4+15+1-1=x²-2x*4+16-1 теперь у нас влевой части, до -1, формула квадрат разности, сворачиваем её к виду (a-b)² x²-2x*4+16-1=(x-4)²-1, то есть x²-8x+15 = (x-4)²-1, на свёрнутой формуле мы можем наглядно видеть все сдвиги, запись (x-4)²-1 означает, что по x нужно сдвинуться на 4 клетки вправо, а по y на 1 клетку вниз, а дальше получаем точку (4;-1) - а эта точка вершина параболы, то есть так же проводим мысленно ординату и строим простую функцию y=x², уже на другой ординате. Надеюсь теперь всё стало понятно))) Фотографии с пстроением 1 графика прикрепил, 2 график по этому образцу постройте)
y=x²-8x+15
Нужно найти вершину данной параболы, т.е. нужно найти координату точки которая состоит из x и y. Чтобы найти x₀, нужно применить формулу x₀=, в данном примере a=1; b=-8; c=15;
x₀=,
теперь нужно найти точку по y, для этого получившийся x₀ подставляем в функцию, тем самым найдём y₀.
y₀=x²₀-8x₀+15=4²-8*4+15=16-32+15=-1. Мы нашли координату вершины параболы (4;-1) в этой точке начинается парабола, то есть просто ставим там точку (по x=4 и по y=-1), и через эту точку мысленно проводим ординату, и строим обычную параболу
y=x²-8x+15
Тут будем применять Метод выделения полного квадрата, но к этому методу плюсом нужно знать Формулы сокращённого умножения...
y=x²-8x+15 - тут видим формулу Квадрат разности (a-b)²=a²-2ab+b²
нам нужно свернуть формулу к виду (a-b)²
из функции y=x²-8x+15 => мы видим что a=x, теперь нам нужно определить чему же равно b, для этого расписываем 2ab =>
y=x²-8x+15=x²-2xb+15, теперь из этого 2xb должно получиться 8x, то есть нужно 2x*4, т.е. b=4
y=x²-2x*4+15, но последнее число должно ровняться 16, т.к. по формуле
(a-b)²=a²-2ab+b², b=4, то есть b²=16, но в функции 15, до 16 не хватает 1, мы её добавляем, а затем отнимаем, т.е. если +1 добавим и отнимим этот самый +1 ничего не измениться.
y=x²-2x*4+15=x²-2x*4+15+1-1. Добавив 1 и обратно отняв её функция не поменялась. теперь чтобы свернуть к виду (a-b)², нам нужна 16, то есть приплюсовываем к 15+1-1=16-1, только плюсуем обратно не отнимаем!!
y=x²-2x*4+15=x²-2x*4+15+1-1=x²-2x*4+16-1 теперь у нас влевой части, до -1, формула квадрат разности, сворачиваем её к виду (a-b)²
x²-2x*4+16-1=(x-4)²-1, то есть
x²-8x+15 = (x-4)²-1, на свёрнутой формуле мы можем наглядно видеть все сдвиги, запись
(x-4)²-1 означает, что по x нужно сдвинуться на 4 клетки вправо, а по y на 1 клетку вниз, а дальше получаем точку (4;-1) - а эта точка вершина параболы, то есть так же проводим мысленно ординату и строим простую функцию y=x², уже на другой ординате.
Надеюсь теперь всё стало понятно)))
Фотографии с пстроением 1 графика прикрепил, 2 график по этому образцу постройте)