Длина одного шага марата 3/5м а длина одного шага жомарта 3/4 м . если расстояние после 8 шагов у них 42/10 м , тогда найдите первоначальное расстояние между ними хелп ми
Диагональ боковой грани данной призмы рассекает боковую грань на два прямоугольных треугольника, одна из сторон которого является стороной основания. Мы можем найти эту сторону (обозначим её как а ) путём расчёта треугольника через 1 сторону и прилежащие к ней углы. Формула площади треугольника через углы и сторону такова: S= 1/2 а² × (sin Alpha × sin Beta) /sin Yamma - а именно, если известна одна сторона треугольника и два прилежащих к ней угла, то S данного треугольника равна половине квадрата данной стороны умноженная на дробь, в числителе которой, произведение синусов прилежащих углов, а в знаменателе синус противолежащего угла. По условию задачи нам известна не сторона, а площадь - она равна половине площади боковой грани, то есть 1/2 Q. Также нам известны углы высеченного диагональю боковой грани треугольника. Они равны : Alpha, 90° (так как призма правильная) и 90°- Alpha (третий угол равен 180°- Alpha - 90°) Подставим значения в формулу: 1/2 Q = 1/2 а² × sin Alpha × sin 90° / sin (90°-Alpha) Q=a² × sin Alpha ×1 / sin (90°-Alpha) a= √ (Q × sin (90°-Alpha) / sin Alpha) Таким образом мы нашли сторону основания призмы. Используя ту же формулу площади треугольника по 1 стороне и углам, найдём площадь основания. Треугольник в основании призмы правильный - то есть, все его углы и стороны равны. Значит все углы в нём равны 180°:3=60° Sосн. =(Q × sin (90°-Alpha) / sin Alpha) × (sin 60°)² / sin 60° S осн.= (Q × sin (90°-Alpha) / sin Alpha) × √3/2 Теперь можно записать площадь призмы. Она равна сумме тройной площади боковой грани и двойной площади основания. S полной поверхности призмы = 3Q + Q × sin (90°-Alpha) / sin Alpha × √3
Ялюблю весну. это прекрасное время года! после суровой, холодной зимы начинает медленно вылезать из облачков теплое солнышко. мы начинаем одевать ветровки смотрим на голубое, красивое солнышко. правда много снег тает прямо на глазах! весна вся такая яркая, зеленая, голубая. слышны звуки птичек, запахи весенние. воздух становится чистым.деревья расцветают, зеленеюте, появляется прекрасная верба! там где солнце, становится чисто, видим лес, поле. я просто обожаю нашу прекрасную, российскую весну!
Формула площади треугольника через углы и сторону такова:
S= 1/2 а² × (sin Alpha × sin Beta) /sin Yamma - а именно,
если известна одна сторона треугольника и два прилежащих к ней угла, то S данного треугольника равна половине квадрата данной стороны умноженная на дробь, в числителе которой, произведение синусов прилежащих углов, а в знаменателе синус противолежащего угла.
По условию задачи нам известна не сторона, а площадь - она равна половине площади боковой грани, то есть 1/2 Q. Также нам известны углы высеченного диагональю боковой грани треугольника. Они равны : Alpha, 90° (так как призма правильная) и 90°- Alpha (третий угол равен 180°- Alpha - 90°)
Подставим значения в формулу:
1/2 Q = 1/2 а² × sin Alpha × sin 90° / sin (90°-Alpha)
Q=a² × sin Alpha ×1 / sin (90°-Alpha)
a= √ (Q × sin (90°-Alpha) / sin Alpha)
Таким образом мы нашли сторону основания призмы. Используя ту же формулу площади треугольника по 1 стороне и углам, найдём площадь основания.
Треугольник в основании призмы правильный - то есть, все его углы и стороны равны. Значит все углы в нём равны 180°:3=60°
Sосн. =(Q × sin (90°-Alpha) / sin Alpha) × (sin 60°)² / sin 60°
S осн.= (Q × sin (90°-Alpha) / sin Alpha) × √3/2
Теперь можно записать площадь призмы. Она равна сумме тройной площади боковой грани и двойной площади основания.
S полной поверхности призмы = 3Q + Q × sin (90°-Alpha) / sin Alpha × √3