По чертежу (рис. 1) мы замечаем, что AM || CH, но для полного убеждения, составим функции прямых по формуле y = kx + m и решим систему уравнений.
Возьмём две любые точки (желательно брать такие точки, если они есть, чтобы аргумент (х) был равен 0; тогда пропадёт коэффицент k и найти m будет легче) для AM, например, (0; 4) и (-2; 3). Составляем таблицу:
Теперь данные из таблицы подставляем к линейной функции вида
y = kx + m:
4 = k0 + m
4 = m ⇒ y = kx + 4
Теперь, находим коэффицент k:
, на 0 делить нельзя, поэтому берем другие точки
Получаем линейную функцию y = 0,5x + 4
Аналогично действуем для второй прямой
1) Таблица:
2) Подставляем значения в y = kx + m:
-1 = k0 + m
-1 = m ⇒ y = kx - 1
3) Находим k:
Так как прямые параллельны, то k будет одинаковый (можно проверить):
⇒ y = 0,5x - 1
Наконец, составляем систему уравнений
Как видим, x и y обратились в 0, а значит, система не имеет решений и прямые не имеют общих точек.
Сравнение двух рассказов л. толстого «акула» и «прыжок» - чем похожи? 1. похожи местом действия – корабль на воде. 2. похожи настроением и переживаниями: вначале у всех хорошее на-строение, потом тревога, волнение, страх, в конце облегчение, разрядка. 3. и в одном, и в другом рассказе отец спасает сына, проявляет наход-чивость в трагические моменты. это сильные, решительные, красивые люди. когда их дети на волоске от смерти, они спасают их, им сильные отцовские чувства, в их характерах – смелость, умение действовать и не те-ряться. в обоих рассказах столько картин, столько движения! - чем отличаются? 1. в «прыжке» лучше показано состояние мальчика (покраснел, бро-сился раззадорился и т. д.) . 2. в «акуле» лучше показано состояние отца.
По чертежу (рис. 1) мы замечаем, что AM || CH, но для полного убеждения, составим функции прямых по формуле y = kx + m и решим систему уравнений.
Возьмём две любые точки (желательно брать такие точки, если они есть, чтобы аргумент (х) был равен 0; тогда пропадёт коэффицент k и найти m будет легче) для AM, например, (0; 4) и (-2; 3). Составляем таблицу:
Теперь данные из таблицы подставляем к линейной функции вида
y = kx + m:
4 = k0 + m
4 = m ⇒ y = kx + 4
Теперь, находим коэффицент k:
, на 0 делить нельзя, поэтому берем другие точки
Получаем линейную функцию y = 0,5x + 4
Аналогично действуем для второй прямой
1) Таблица:
2) Подставляем значения в y = kx + m:
-1 = k0 + m
-1 = m ⇒ y = kx - 1
3) Находим k:
Так как прямые параллельны, то k будет одинаковый (можно проверить):
⇒ y = 0,5x - 1
Наконец, составляем систему уравнений
Как видим, x и y обратились в 0, а значит, система не имеет решений и прямые не имеют общих точек.