Длинное основание EN равнобедренной трапеции ELCN равно 5 см, короткое основание LC и боковые стороны равны. Определите периметр трапеции, если острый угол трапеции равен 80 градусам
Построить график функции без небольшого анализа самой функции практически невозможно. Это необходимо как минимум для того, чтобы проконтролировать правильность построения. Поэтому с небольшого анализа и начнем.
Первое, на что необходимо обратить внимание — это разновидность заданной функции. От этой разновидности будет зависеть и кривая графика.
В нашем случае заданная функция — линейная, поэтому ее графиком будет прямая линия. Такой короткий анализ уже намного упрощает задание.
О прямой линии известно, что ее можно построить с двух точек. Поэтому достаточно найти две точки графика и провести через них прямую.
Точка принадлежит графику, если выполняется условие, что:
\[y\ =\ 2x\ -\ 4\]
Найдем такие 2 точки, выбрав произвольные значения аргумента х. Например, возьмем 0 и 5.
При х = 0 значение функции будет:
\[y\left(0\right)\ =\ 2\cdot 0\ -4=-4\]
\[y\left(5\right)\ =\ 2\cdot 5\ -4=6\]
Есть две точки (0; -4) и (5; 6). Проведем через них прямую, которая будет графиком заданной в условии функции.
Можно было подставлять не произвольные значения переменной х, а найти точки пересечения функции с координатными осями. Оба варианта приведут к одному и тому же результату и являются равными по сложности расчетов.
"Доказательств", что 2+2=5 есть много. Рассмотри самое Запишем равенство: 20 - 20 = 25 - 25. Вынесем множители за скобки: 4(5 - 5) = 5(5 - 5). Разделим обе части равенства на общий множитель (5 - 5). Получаем равенство 4 = 5. Следовательно, 2+2=5. Давайте найдем ошибку. Всё А в математике делить на ноль нельзя.
Второе «доказательство». 2 + 2 = 5. Преобразуем это равенство 2 * 1 + 2 * 1 = 5 * 1. Распишем 1 как частное равных чисел: Получим 1 = (5 - 5)/(5 - 5). Получим 2 * (5 - 5)/(5 - 5) + 2 * (5 - 5)/(5 - 5) = 5 * (5 - 5)/(5 - 5). Умножаем обе части равенства на (5 - 5), получаем 2 * (5 - 5) + 2 * (5 - 5) = 5*(5 - 5). Получим 0 + 0 = 0. В это доказательстве тоже спрятана ошибка — деление на ноль.
Пошаговое объяснение:
Построить график функции без небольшого анализа самой функции практически невозможно. Это необходимо как минимум для того, чтобы проконтролировать правильность построения. Поэтому с небольшого анализа и начнем.
Первое, на что необходимо обратить внимание — это разновидность заданной функции. От этой разновидности будет зависеть и кривая графика.
В нашем случае заданная функция — линейная, поэтому ее графиком будет прямая линия. Такой короткий анализ уже намного упрощает задание.
О прямой линии известно, что ее можно построить с двух точек. Поэтому достаточно найти две точки графика и провести через них прямую.
Точка принадлежит графику, если выполняется условие, что:
\[y\ =\ 2x\ -\ 4\]
Найдем такие 2 точки, выбрав произвольные значения аргумента х. Например, возьмем 0 и 5.
При х = 0 значение функции будет:
\[y\left(0\right)\ =\ 2\cdot 0\ -4=-4\]
\[y\left(5\right)\ =\ 2\cdot 5\ -4=6\]
Есть две точки (0; -4) и (5; 6). Проведем через них прямую, которая будет графиком заданной в условии функции.
Можно было подставлять не произвольные значения переменной х, а найти точки пересечения функции с координатными осями. Оба варианта приведут к одному и тому же результату и являются равными по сложности расчетов.
"Доказательств", что 2+2=5 есть много. Рассмотри самое Запишем равенство: 20 - 20 = 25 - 25. Вынесем множители за скобки: 4(5 - 5) = 5(5 - 5). Разделим обе части равенства на общий множитель (5 - 5). Получаем равенство 4 = 5. Следовательно, 2+2=5. Давайте найдем ошибку. Всё А в математике делить на ноль нельзя.
Второе «доказательство». 2 + 2 = 5. Преобразуем это равенство 2 * 1 + 2 * 1 = 5 * 1. Распишем 1 как частное равных чисел: Получим 1 = (5 - 5)/(5 - 5). Получим 2 * (5 - 5)/(5 - 5) + 2 * (5 - 5)/(5 - 5) = 5 * (5 - 5)/(5 - 5). Умножаем обе части равенства на (5 - 5), получаем 2 * (5 - 5) + 2 * (5 - 5) = 5*(5 - 5). Получим 0 + 0 = 0. В это доказательстве тоже спрятана ошибка — деление на ноль.
Пошаговое объяснение: