Атлантический океан известен человеческой цивилизации с незапамятных времён. Именно здесь, по древним преданиям, находился таинственный остров Атлантида, ушедший под воду семнадцать тысяч лет назад. Жил на нём воинственный и мужественный народ (атланты), а царствовал над ним бог Посейдон вместе с женой Клейто. Имя их старшего сына было Атлан. В его честь, омывающее эту землю безбрежное море и было названо Атлантическим.
Атлантический океан Загадочная цивилизация канула в лету, море переименовали в океан, а название так и осталось. Никуда не делись и тайны Атлантического океана. По столетий их меньше не стало. Но прежде чем ознакомиться со всем необычным и загадочным, необходимо получить общее представление о величественных водах, омывающих одновременно и берега жаркой Африки, и земли старушки Европы, и далёкое, покрытое дымкой сказочных преданий скалистое побережье Американского континента.
Рассмотрим только кратчайшие пути. Пусть паук сидит в А1, а муха в С. Если паук пройдет по ребру A1A, то у него будет 3 пути: ADC, ABC, AC. Тоже самое, если он пройдет по ребру A1B1 или A1D1. По 3 на каждую. Всего 3*3 = 9 путей. Если он пройдет сначала по диагонали A1D, то у него будет 5 путей: DC, DAC, DBC, DC1C, DD1C. И также на каждой из 3 диагоналей. Всего 3*5 = 15 путей. Итак, получается всего 9 + 15 = 24 кратчайших путей. Есть и более длинные пути, например, A1ABB1C1C или A1DD1B1C. Таких путей очень много, я даже не знаю, как их все пересчитать.
Атлантический океан
Загадочная цивилизация канула в лету, море переименовали в океан, а название так и осталось. Никуда не делись и тайны Атлантического океана. По столетий их меньше не стало. Но прежде чем ознакомиться со всем необычным и загадочным, необходимо получить общее представление о величественных водах, омывающих одновременно и берега жаркой Африки, и земли старушки Европы, и далёкое, покрытое дымкой сказочных преданий скалистое побережье Американского континента.
Если паук пройдет по ребру A1A, то у него будет 3 пути: ADC, ABC, AC.
Тоже самое, если он пройдет по ребру A1B1 или A1D1. По 3 на каждую.
Всего 3*3 = 9 путей.
Если он пройдет сначала по диагонали A1D, то у него будет 5 путей:
DC, DAC, DBC, DC1C, DD1C.
И также на каждой из 3 диагоналей. Всего 3*5 = 15 путей.
Итак, получается всего 9 + 15 = 24 кратчайших путей.
Есть и более длинные пути, например, A1ABB1C1C или A1DD1B1C.
Таких путей очень много, я даже не знаю, как их все пересчитать.