В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Эллада20029
Эллада20029
06.06.2023 04:04 •  Математика

для шкільної їдальні купили 800 грн твердого сиру по 220 за кілограм і на 60 грн масло по 200 за кілограм

Показать ответ
Ответ:
LikaKotik666
LikaKotik666
04.12.2022 20:55

а) на доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после семи таких операций на доске будет только одно число. может ли оно равняться 97?

б) на доске выписаны числа 1, 21, 2², 2³, 210. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после нескольких таких операций на доске будет только одно число. чему оно может быть равно?

решение

  a) получить 97 можно, например, так. последовательно вычитая из 16 числа 8, 4, 2, 1, получим 1. на доске остались числа 1, 32, 64, 128. далее: бикю 64 – 32 = 32,   32 – 1 = 31,   128 – 31 = 97.

  б) докажем, что если на доске выписаны числа 1, 2, 2n, то после n операций, описанных в условии, может получиться любое нечётное число от 1 до   2n – 1.   очевидно, числа, большие 2n, на доске не появляются. легко видеть также, что на доске всегда присутствует ровно одно нечётное число. значит, и последнее оставшееся на доске число нечётно. утверждение о том, что все указанные числа построить можно, докажем индукцией по n.

  база. имея числа 1 и 2, можно получить только число 1.

  шаг индукции. пусть на доске выписаны числа 1, 2, 2n+1. любое нечётное число, меньшее 2n, можно получить за   n + 1   операцию (на первом шаге сотрём 2n+1 и 2n и напишем 2n, далее по предположению индукции). нечётные числа от   2n + 1   до   2n+ 1 – 1   можно записать в виде   2n+1 – a,   где число a можно получить из набора 1, 2, 2n. на последнем шаге из   2n+1 вычитаем a.

ответ

а) может;   б) любому нечётному числу от 1 до   210 – 1.

замечания

: 2 + 3

0,0(0 оценок)
Ответ:
mariyapetrpet
mariyapetrpet
02.03.2021 02:45
A)   - (a-5)(a+-a)^2= - (a^2+3a-5a-15)- (1-2a+a^2) =          - (a^2 -2a+15 -2a+a^2)=   - a^2 +2 a - 15 -1+2a -a^2 =         -2a^2 + 4a -16= -2  ( a^2 -2 a +8 )   c ) ( 2 a+  0.5)^2 - (  0.5 - 2 a )^2 = ( 0.5 + 2 a )^2 - ( 0 . 5 - 2 a )^2=                 0.25 +2 a + 4 a ^2 -  0.25+ 2 a - 4 a^2= 4 a . e )   25 x ^2 +( 7+5 x) (7-5x )=   25x^2 + 49-25x^2=49
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота