y ` ` = - 25 * cos ( - 5 * x + 2)
Пошаговое объяснение:
y = cos ( - 5 * x + 2)
Чтобы найти первую производную, используем формулы:
(cos x) ` = - sin x
(k * x) ` = k
(C) ` = 0
Тогда первая производная для данной функции:
y ` = - ( sin ( - 5 * x + 2)) * ( - 5 * x + 2) `
y ` = - sin ( - 5 * x + 2) * ( - 5)
y ` = - 5 * (- sin ( - 5 * x + 2))
y ` = 5 * sin ( - 5 * x + 2)
Для определения второй производной нам будут нужны формулы:
(sin x) ` = cos x
Вторую производную берём для найденной первой производной ущё раз:
y ` ` = ( 5 * sin ( - 5 * x + 2)) `
y ` ` = 5 * cos ( - 5 * x + 2) * ( - 5 * x + 2) `
y ` ` = 5 * cos ( - 5 * x + 2) * ( - 5 )
y ` ` = - 5 * 5 * cos ( - 5 * x + 2)
Это и есть вторая производная.
х^4 -а^4 +а^3 •х-ах^3 +с^3 •х-ас^3=
Решаем по действиям:
х^4 -а^4=(х-а)(х+а)(х^2 +а^2)
а^3 •х-ах^3=ах(а^2 -х^2)=ах(а-х)(а+х)=-ах(х-а)(х+а)
с^3 •х-ас^3=с^3(х-а)
Итог:
(х-а)(х+а)(х^2 +а^2)-ах(х-а)(х+а)+с^3(х-а)=(х-а)((х+а)(х^2 +а^2-ах)+с^3)=(х-а)(х^3 +а^3 +с^3)
а^3 -а^2 +х^3 -х^2 +а^2 х+ах^2=(a^3 +а^2 х)-(а^2 +х^2)+(х^3 +ах^2)=а^2(а+х)+х^2(а+х)-(а^2 +х^2)=(а+х)(а^2 +х^2)-(а^2 +х^2)=(а^2 +х^2)(а+х-1)
(х^3 +у^3)+(ху^2 +х^2 у)+(х^2 z+y^2 z)=(x+y)(x^2 -xy+y^2)+xy(x+y)+z(x^2 +y^2)=(x+y)(x^2 -xy+xy+y^2)+z(x^2 +y^2)=(x+y)(x^2 +y^2)+z(x^2 +y^2)=(x+y+z)(x^2 +y^2)
a^3 +a+ab^2 -a^2 b-b-b^3=(а^3 -a^2 b)+(a-b)+(ab^2 -b^3)
a^3 -a^2 b=a^2(a-b)
ab^2 -b^3=b^2(a-b)
(a-b)(a^2 +1+b^2)
(3а^3 +12а^2)-(а+4)=3а^2 (а+4)-(а+4)=(3а^2 -1)(а+4)
(а^3 +а^2)+(а+1)=а^2(а+1)+(а+1)=(а^2 +1)(а+1)
(az^2 +az)-(bz^2 +bz)-(a-b)=az(z+1)-bz(z+1)-(a-b)=(z+1)(az-bz)-(a-b)=(z+1)z(a-b)-(a-b)=(a-b)(z+1)(z-1)=(a-b)(z^2 -1)
y ` ` = - 25 * cos ( - 5 * x + 2)
Пошаговое объяснение:
y = cos ( - 5 * x + 2)
Чтобы найти первую производную, используем формулы:
(cos x) ` = - sin x
(k * x) ` = k
(C) ` = 0
Тогда первая производная для данной функции:
y ` = - ( sin ( - 5 * x + 2)) * ( - 5 * x + 2) `
y ` = - sin ( - 5 * x + 2) * ( - 5)
y ` = - 5 * (- sin ( - 5 * x + 2))
y ` = 5 * sin ( - 5 * x + 2)
Для определения второй производной нам будут нужны формулы:
(sin x) ` = cos x
(k * x) ` = k
(C) ` = 0
Вторую производную берём для найденной первой производной ущё раз:
y ` ` = ( 5 * sin ( - 5 * x + 2)) `
y ` ` = 5 * cos ( - 5 * x + 2) * ( - 5 * x + 2) `
y ` ` = 5 * cos ( - 5 * x + 2) * ( - 5 )
y ` ` = - 5 * 5 * cos ( - 5 * x + 2)
y ` ` = - 25 * cos ( - 5 * x + 2)
Это и есть вторая производная.
Пошаговое объяснение:
х^4 -а^4 +а^3 •х-ах^3 +с^3 •х-ас^3=
Решаем по действиям:
х^4 -а^4=(х-а)(х+а)(х^2 +а^2)
а^3 •х-ах^3=ах(а^2 -х^2)=ах(а-х)(а+х)=-ах(х-а)(х+а)
с^3 •х-ас^3=с^3(х-а)
Итог:
(х-а)(х+а)(х^2 +а^2)-ах(х-а)(х+а)+с^3(х-а)=(х-а)((х+а)(х^2 +а^2-ах)+с^3)=(х-а)(х^3 +а^3 +с^3)
а^3 -а^2 +х^3 -х^2 +а^2 х+ах^2=(a^3 +а^2 х)-(а^2 +х^2)+(х^3 +ах^2)=а^2(а+х)+х^2(а+х)-(а^2 +х^2)=(а+х)(а^2 +х^2)-(а^2 +х^2)=(а^2 +х^2)(а+х-1)
(х^3 +у^3)+(ху^2 +х^2 у)+(х^2 z+y^2 z)=(x+y)(x^2 -xy+y^2)+xy(x+y)+z(x^2 +y^2)=(x+y)(x^2 -xy+xy+y^2)+z(x^2 +y^2)=(x+y)(x^2 +y^2)+z(x^2 +y^2)=(x+y+z)(x^2 +y^2)
a^3 +a+ab^2 -a^2 b-b-b^3=(а^3 -a^2 b)+(a-b)+(ab^2 -b^3)
Решаем по действиям:
a^3 -a^2 b=a^2(a-b)
ab^2 -b^3=b^2(a-b)
Итог:
(a-b)(a^2 +1+b^2)
(3а^3 +12а^2)-(а+4)=3а^2 (а+4)-(а+4)=(3а^2 -1)(а+4)
(а^3 +а^2)+(а+1)=а^2(а+1)+(а+1)=(а^2 +1)(а+1)
(az^2 +az)-(bz^2 +bz)-(a-b)=az(z+1)-bz(z+1)-(a-b)=(z+1)(az-bz)-(a-b)=(z+1)z(a-b)-(a-b)=(a-b)(z+1)(z-1)=(a-b)(z^2 -1)