Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.
Подсказка
Разложите число 1995 на простые множители.
Решениена
1995 = 3·5·7·19. Надо разбить это произведение на две группы: часть множителей войдёт в исходное число, а другая часть будет его цифрами. Ясно, что 19 войдёт в искомое число (цифры "19": нет!). Остаётся несложный перебор, который даёт единственный ответ: 57·5·7 = 1995.
Условие
Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.
Подсказка
Разложите число 1995 на простые множители.
Решениена
1995 = 3·5·7·19. Надо разбить это произведение на две группы: часть множителей войдёт в исходное число, а другая часть будет его цифрами. Ясно, что 19 войдёт в искомое число (цифры "19": нет!). Остаётся несложный перебор, который даёт единственный ответ: 57·5·7 = 1995.
ответ
57.
Пошаговое объяснение:
просто подстав замість 1995 3666
7992
Пошаговое объяснение:
Если трёхзначное число, записанное одинаковыми цифрами а записать поразрядно, получим 100*а+10*а+1*а
Если затем, это число умножить на 8, получим
8*(100*a+10*a+1*a)=800*а+80*а+8*а=888*а
Если трёхзначное число, записанное одинаковыми цифрами b записать поразрядно, получим 100*b+10*b+1*b
Если затем, это число умножить на 9, получим
9*(100*b+10*b+1*b)= 900*а+90*а+9*а=999*b
По условию задачи, 888*а=x и 999*b=x. Значит, 888*a=999*b
Находим х. Для этого найдём наименьшее общее кратное чисел 888 и 999.
х = НОК(888,999)=(8*111, 9*111) = 8*9*111=72*111=7992
х=7992 - искомое четырёхзначное число
Проверка:
7992:8=999, 7992:9=888