Если отметить эти точки на координатной плоскости, а затем соединить их отрезками в последовательности A — B — C — D — E — F — G — H — I — J — K — L — M — N — O — P — Q — R — S — T — U — V — W — X — Y — A , то получим рисунок.
Если рядом сидят два химика, то правый скажет правду: НЕТ. Если рядом сидят два алхимика, то правый соврет: НЕТ. Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика. Допустим, у нас n химиков. Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ. Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество. Пусть все химики сидят через одного с алхимиками. ХАА...АХАХА...ХА Разобьем их на пары (ХА)А...А(ХА)(ХА)...(ХА) Здесь n А подряд и n пар ХА. Всего n + n А и n Х. n + n + n = 160 3n = 160 Но 160 не делится на 3, поэтому такого не может быть. Значит, есть хотя бы одна пара Х подряд. (ХА)(ХХ)А...А(ХА)(ХА)...(ХА) Здесь 2 химика, еще (n-2) пары ХА и ряд из n А. Химиков по-прежнему n, а алхимиков n + (n-2) n + n - 2 + n = 160 3n - 2 = 160. 3n = 162 n = 54
Пример:
известны координаты 25 точек:
A(7 ; 18) , B(9 ; 18) , C(14 ; 22) , D(14 ; 24) , E(18 ; 19) , F(17 ; 15) , G(20 ; 10) , H(17 ; 3) , I(19 ; 1) , J(15 ; 1) , K(14 ; 3) , L(11 ; 3) ,
M(12 ; 1) , N(7 ; 1) , O(2 ; 11) , P(1 ; 18) , Q(2 ; 23) , R(5 ; 24) , S(7 ; 22) , T(5 ; 11) , U(8 ; 7) , V(12 ; 7) , W(16 ; 11) , X(16 ; 14) , Y(11 ; 14) .
Если отметить эти точки на координатной плоскости, а затем соединить их отрезками в последовательности A — B — C — D — E — F — G — H — I — J — K — L — M — N — O — P — Q — R — S — T — U — V — W — X — Y — A , то получим рисунок.
Пошаговое объяснение что по частям
Если рядом сидят два алхимика, то правый соврет: НЕТ.
Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика.
Допустим, у нас n химиков.
Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ.
Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество.
Пусть все химики сидят через одного с алхимиками.
ХАА...АХАХА...ХА
Разобьем их на пары
(ХА)А...А(ХА)(ХА)...(ХА)
Здесь n А подряд и n пар ХА. Всего n + n А и n Х.
n + n + n = 160
3n = 160
Но 160 не делится на 3, поэтому такого не может быть.
Значит, есть хотя бы одна пара Х подряд.
(ХА)(ХХ)А...А(ХА)(ХА)...(ХА)
Здесь 2 химика, еще (n-2) пары ХА и ряд из n А.
Химиков по-прежнему n, а алхимиков n + (n-2)
n + n - 2 + n = 160
3n - 2 = 160.
3n = 162
n = 54