Пусть скорость течения реки равна х км/ч. Скорость лодки, движущейся по течению реки равна (20 + х) км/ч, а скорость лодки, движущейся против течения реки - (20 - х) км/ч. Путь пройденный первой лодкой за 1 час равно (20 + х) километров (чтобы найти пройденный путь, надо скорость умножить на время), а путь, пройденный второй лодкой за 2 часа, равен 2(20 - х) километров. Расстояние между двумя пунктами реки равно сумме расстояний пройденными лодками до их встречи и равно (20 + х + 2(20 - х)) километров или 57 км. Составим уравнение и решим его.
Пошаговое объяснение:
пример
150 I 25
если делитель двухзначный
1) берем от делителя первую цифру это 2
2) первую цифру делимого делим на 2
1 на 2 не делится тогда берем две цифры (если не делится берем 3 цифры и так далее)
15 делить на 2 получится 7
пробуем взять по 7 но если получится число большее чем 150 тогда берем на 1 меньше
25*7=175 много
берем по 6
25*6=150 получилось
если делитель трехзначный например 325
1625 I325
делаем все также как и в предыдущем примере
делим на 2
1 на 2 не делится берем 16
16/2=8 делится берем по 8
325*8=2600 много берем по 7
325*6=2275 много берем по 5
325*5= 1625 делится
ответ 1625
Пусть скорость течения реки равна х км/ч. Скорость лодки, движущейся по течению реки равна (20 + х) км/ч, а скорость лодки, движущейся против течения реки - (20 - х) км/ч. Путь пройденный первой лодкой за 1 час равно (20 + х) километров (чтобы найти пройденный путь, надо скорость умножить на время), а путь, пройденный второй лодкой за 2 часа, равен 2(20 - х) километров. Расстояние между двумя пунктами реки равно сумме расстояний пройденными лодками до их встречи и равно (20 + х + 2(20 - х)) километров или 57 км. Составим уравнение и решим его.
20 + х + 2(20 - х) = 57;
20 + x + 40 - 2x = 57;
- x + 60 = 57;
- x = 57 - 60;
- x = - 3;
x = 3 (км/ч).
ответ. 3 км/ч.