В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dennie258
Dennie258
12.01.2022 03:04 •  Математика

До ть з 25.4 та 25.5 завданнями, будь ласка.

Показать ответ
Ответ:
думка3
думка3
03.02.2023 21:54

Пускай скорость теплохода в стоячей воде будет равна х.

Таким образом, поскольку скорость течения составляет 4 км/ч, значит скорость по течению составит: х + 4 км/ч.

Скорость против течения: х - 4.

8 ч 20 мин = 8 1/3 часа.

Получаем уравнение суммы времени.

80 / (х + 4) + 80 / (х - 4) = 8 1/3.

80 * х - 320 + 80 * х + 320 = 8 1/3 * х^2 - 133 1/3.

8 1/3 * х^2 - 160 * х - 133 1/3 = 0.

х^2 - 19,2 * х - 16 = 0.

Д^2 = (-19,2)^2 - 4 * 1 * (-16) = 368,64 + 64 = 432,46.

Д = 20,8.

х = (19,2 + 20,8) / 2 = 40 / 2 = 20 км/ч.

20 км/ч.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
12dosbol
12dosbol
23.05.2021 07:26

Сложение, вычитание, умножение и деление идут первыми в списке арифметических действий. У математиков не сразу сложилось представление о возведении в степень как о самостоятельной операции, хотя в самых древних математических текстах Древнего Египта и Междуречья встречаются задачи на вычисление степеней.

В своей знаменитой «Арифметике» Диофант Александрийский описывает первые натуральные степени чисел так:

«Все числа… состоят из некоторого количества единиц; ясно, что они продолжаются, увеличиваясь до бесконечности. …среди них находятся: квадраты, получающиеся от умножения некоторого числа самого на себя; это же число называется стороной квадрата, затем кубы, получающиеся от умножения квадратов на их сторону, далее квадрато-квадраты — от умножения квадратов самих на себя, далее квадрато-кубы, получающиеся от умножения квадрата на куб его стороны, далее кубо-кубы — от умножения кубов самих на себя».

Немецкие математики Средневековья стремились ввести единое обозначение и сократить число символов. Книга Михеля Штифеля «Полная арифметика» (1544 г.) сыграла в этом значительную роль.

«Сумма знаний…» Луки Пачоли была одним из первых опубликованных сочинений. Но математики продолжали искать более простую систему обозначений так как его обозначения были не удобны.

Француз, бакалавр медицины Никола Шюке (? - около 1500 г.) смело ввёл в свою символику не только нулевой, но и отрицательный показатель степени. Он писал его мелким шрифтом сверху и справа от коэффициента.

В XVI в. итальянец Раффаэле Бомбелли в своей «Алгебре» использовал ту же идею. Он обозначал неизвестное специальным символом 1, а символами 2, 3,... - его степени. Обозначения Бомбелли также оказали влияние и на символику нидерландского математика Симона Стевина (1548—1620). Он обозначал неизвестную величину кружком О, внутри которого указывал показатели степени. Стевин предложил называть степени по их показателям - четвёртой, пятой и т. Д. и отверг Диофантовы составные выражения «квадрато-квадрат», «квадрато-куб».

У Рене Декарта в его «Геометрии» (1637) мы находим современное обозначение степеней а2,а3,... Любопытно, что Декарт считал, что а*а не занимает больше места, чем а2 и не пользовался этим обозначением при записи произведения двух одинаковых множителей. Немецкий ученый Лейбниц считал, что упор должен быть сделан на необходимости применения символики для всех записей произведений одинаковых множителей и применял знак а2.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота