Рассмотрим первое слагаемое (82n). Произведение четного числа на любое другое целое дает нам четное число (правило 2).
Второе слагаемое должно быть нечетным, так как произведение двух нечетных чисел нечетно (правило 1).
И сумма четного и нечетного чисел обязательно нечетна (3), искомое число будет нечетным, что и требовалось доказать!
Примечание:
Необходимые правила:
(1) Если нечетное число умножить на нечетное, то получится тоже нечетное ().(2) Произведение четного числа на любое натуральное (или целое) всегда будет четным (если умножаем на нечетное:; если на четное: ).(3) Если сложить четное и нечетное числа, то получится нечетное число ().
2) KL² =NL*LM² NL =x LM=MN -NL =25 -x;
144 =x(25 -x) ;
x² -25x +144 =0;
x = 9
x=16 (по рисунку NL < LM )
ΔKLN : NK² =NL²+ LK²
NK =3*5 =15 (9 =3*3; 12=3*4; 3*5=15)..
ΔKLM : KM² =KL² +LM²
KM =4*5 =20 (12 =4*3; 16=4*4 ;4*5 =20)
3) KE² =EM*EL
EM =KE²/EL =6²/8 =9/2 =4,5
KL² =KE² +EL² =6² +8² =100 =10²
KL =10.
KL² =ML*EL
ML =KL²/EL =100/8 =12,5.;
( 5/EM = ML --EL =12,5 -8 =4,5)
MK² =ML*ME;
MK² =12,5*4,5 =25*0,5*0,5*9;
MK =5*0,5*3 =7,5.
4) MN² =MK² +KN² =5² +²12² =25 +144 =169 =13²;
MN =13;
MK² =MN*MT ;
MT =MK²/MN=5²/13 =25/13.
NT =MN -MT =13 -25/13 =144/13;
KT² =MT*NT=25/13*144/13 =(5*12/13)² ;
KT =5*12/13 =60/13.
или из ΔMTK :
KT² =MK² -MT²² =5² -(25/13)² =(5 -25/13)(5+25/13) =40/13*90/13 =(2*3*10/13)²;
KT =2*3*10/13 =60/13 .
Рассмотрим первое слагаемое (82n). Произведение четного числа на любое другое целое дает нам четное число (правило 2).
Второе слагаемое должно быть нечетным, так как произведение двух нечетных чисел нечетно (правило 1).
И сумма четного и нечетного чисел обязательно нечетна (3), искомое число будет нечетным, что и требовалось доказать!
Примечание:
Необходимые правила:
(1) Если нечетное число умножить на нечетное, то получится тоже нечетное ().(2) Произведение четного числа на любое натуральное (или целое) всегда будет четным (если умножаем на нечетное:; если на четное: ).(3) Если сложить четное и нечетное числа, то получится нечетное число ().