В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
MeXaHuK0
MeXaHuK0
07.03.2021 08:41 •  Математика

Доказать, что для любого натурального числа n истинно утверждение (8^n +6): 7

Показать ответ
Ответ:
alina17anilaalina
alina17anilaalina
27.08.2020 08:23

Доказать, что для любого натурального числа n истинно утверждение (8^n +6):7

1. проверим для n=1

(8^1 + 6) / 7 = 14/7 да делится

2. пусть для n=k верно

3. докажем что верно для n=k+1

8^(k+1) + 6 = 8*8^k + 6 = 7*8^k + (8^k+6)

получилт два слагаемых первое делится на 7 - один из множителей кратен 7, а второе по утверждению 2

доказали

0,0(0 оценок)
Ответ:
RU2017
RU2017
27.08.2020 08:23

Докажем утверждение с математической индукции

Метод заключается в следующем:

1) Проверяем истинность утверждения для n=1

2) Предполагаем, что данное утверждение истинно и пытаемся доказать его для n+1

1) n=1:
\medskip
\\
8^1+6=14
\medskip
\\
7\mid14
\medskip
\\
2)8^n+6=7M \Rightarrow 6=7M-8^n
\medskip
\\
8^{n+1}+6=8\cdot8^n+6=8\cdot8^n+7M-8^n=7\cdot8^n+7M=\medskip\\=7(8^n+M)
\medskip
\\
7 \mid 7(8^n+M)

Утверждение доказано

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота