В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vikapataeva
vikapataeva
26.06.2021 09:57 •  Математика

Доказать, что если кривая y=ax^2+bx+c дважды пересекает ось абсцисс, то углы между этой кривой и данной осью в точках их пересечения равны между собой. чему равны эти углы?

Показать ответ
Ответ:
xellgf
xellgf
24.07.2020 11:49
Вообще-то эти углы не будут равны.
Это же парабола. А она имеет ось симметрии, перпендикулярную оси абсцисс. Ну и так как угол между кривой и осью 0Х задаётся касательной к кривой в точке пересечения её с осью, то вспомним, что производная функции в точке равна тангенсу угла наклона касательной в этой точке. То есть угол наклона касательной определяется производной функции.
производная равна y'=2ax+b.
Точки пересечения оси абсцисс есть корни исходного квадратного уравнения
x1=(-b+SQRT(b^2-4ac))/2a; x2=(-b-SQRT(b^2-4ac))/2a;
подставим эти корни в производную и найдём тангенсы углов наклона касательных в этих точках: x1) 2a*(-b+SQRT(b^2-4ac))/2a+b=SQRT(b^2-4ac)
x2) 2a*(-b-SQRT(b^2-4ac))/2a+b=-SQRT(b^2-4ac)
сами углы будут равны q1=arctg(SQRT(b^2-4ac)) и q2=arctg(-SQRT(b^2-4ac))
Видно, что значение тангенса углов наклона различается только знаком. Так как тангенс нечётная функция, то tg(-x)=-tg(x), а значит и углы наклона касательной к данной функции в точках пересечения оси абсцисс будут различаться лишь знаком. то есть один угол будет q, а второй -q
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота