Доказать, что любая функция(от k переменных) f: Fn*...*Fn -> Fn (где Fn - конечное поле) может быть представлена в виде многочлена от k переменных над полем Fn. Решить получилось только для функций одной переменной. Для этого я использую интерполяционный многочлен Лагранжа. Возможно это можно обобщить на функции нескольких переменных.
Рассмотрим лжеца. Справа от него должны сидеть 4 рыцаря и лжец, запишем рассадку так: Л{nР}Л{mР} — лжец, потом n рыцарей, потом опять лжец и m = 4 - n рыцарей. Докажем, что следующая шестёрка будет сидеть так же.
Следующим будет сидеть лжец, чтобы рыцарь, сидящий на втором месте, сказал правду. Затем 4 - m = n рыцарей, чтобы лжец, сидящий на месте n + 2, соврал. Затем снова лжец, чтобы рыцарь на месте n + 3, соврал, и ещё m рыцарей для лжеца на 7 месте.
Итого, лжецы и рыцари сидят десятью одинаковыми шестёрками, в каждой из которых по 4 рыцаря и 2 лжеца.
Всего получается 4 * 10 = 40 рыцарей.