В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Qweryuibcdd
Qweryuibcdd
02.05.2023 21:49 •  Математика

Доказать, что прямые y-2x-3=0 и 8x-4y+1=0 параллельны и вычислить расстояние между ними.

Показать ответ
Ответ:
lilibete007
lilibete007
28.09.2020 16:13
Поєтому єти прямие не пересекаются на координатной пдоскости, следовательно , они параллельни
Доказать, что прямые y-2x-3=0 и 8x-4y+1=0 параллельны и вычислить расстояние между ними.
0,0(0 оценок)
Ответ:
АляЛайк
АляЛайк
28.09.2020 16:13
Прямые параллельны, если их векторы нормали коллинеарные. Вектор нормали первой прямой равен (-2;1), это коэффициенты при x и y. Вектор нормали второй прямой равен (8;-4). Так как -2/8 = 1/(-4), векторы коллинеарны, а значит, прямые параллельны. Теперь приведем прямые к одинаковым векторам нормали. То есть первая прямая пусть так и остается -2x+y-3=0. В уравнении второй прямой разделим обе части на -4 и получим -2x+y-1/4=0. Расстояние между ними найдем как: |-3 - (-1/4)|/√((-2)²+1²)=11√5/20.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота