В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Kobrasmary
Kobrasmary
28.11.2021 11:33 •  Математика

Доказать методом индукции что (5*2^3n-2 +3^3n-1) делится на 19 без остатка

Показать ответ
Ответ:
dmolodozhnikovp02gx5
dmolodozhnikovp02gx5
09.10.2020 03:01

для N=1

5*2^(3-2) + 3^(3-1)=10+9=19 делится

предположим что верно для N, тогда верно и для N+1

5*2^(3N-2)+3^(3N-1) верно

Доказать что 5*2^(3(N+1)-2)+3^(3(N+1)-1) тоже делится на 19

5*2^(3(N+1)-2)+3^(3(N+1)-1)=5*2^(3N+3-2)+3^(3N+3-1)=5*2^(3N+1)+3^(3N+2)=

= 5*2^(3N-2)*2^3+3^(3N-1)*3^3=5*2^(3N-2)*8+3^(3N-1)*27=5*2^(3N-2)*8+3^(3N-1)*8+3^(3N-1)*19=8*(5*2^(3N-2)+3^(3N-1))+3^(3N-1)*19

два слагаемых - второе делится так как один из сомножителей кратен 19, в первом слагаемом в скобках тоже делится на 19 как предположение при N

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота