Докажите, что а) если (5x) ⋮ 7, то (2x) ⋮ 7 б) если (5x) ⋮ 12, то (2x) ⋮ 12 в) если (7x + 5y) ⋮ 3, то (4x + 2y) ⋮ 3 г) если (3x + 4y) ⋮ 7, то (6x + y) ⋮ 7 д) если (2x + 3y) ⋮ 6, то 10x ⋮ 6 е) если (6x + 4y) ⋮ 5, то (4x + 6y) ⋮ 5 ё) * если (7x-4y + 6) ⋮ 11, то за хороший ответ прям сейчас
История обыкновенных дробей
Дроби появились в глубокой древности. При разделе добычи, при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести дроби.
Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа -2/3- у них был специальный значок. Между прочим, это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе единицу (так называемые основные дроби): 1/2; 1/3; 1/28; ... . Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно. В папирусе Ахмеса есть задача :
"Разделить 7 хлебов между 8 людьми". Если резать каждый хлеб на 8 частей, придётся провести 49 разрезов.
А по-египетски эта задача решалась так: Дробь 7/8 записывали в виде долей: 1/2+1/4+1/8. Значит каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезали пополам, два хлеба- на 4 части и один хлеб на 8 долей, после чего каждому дали его часть.
Но складывать такие дроби было неудобно. Ведь в оба слагаемых могут входить одинаковые доли, и тогда при сложении появится дробь вида 2/n. А таких дробей египтяне не допускали. Поэтому, папирус Ахмеса начинается с таблицы, в которой все дроби такого вида от 2/5 до 2/99 записаны в виде суммы долей.
Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением.
В древнем Вавилоне предпочитали наоборот, - постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Но было неудобно работать над натуральными числами, записанными по десятичной системе, и дробями, записанными по шестидесятеричной. А работать с обыкновенными дробями было уже совсем трудно. Поэтому голландский математик Симон Стевин предложил перейти к десятичным дробям
Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.
Даже сейчас иногда говорят:"Он скрупулёзно изучил этот вопрос." Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово "скрупулёзно" от римского названия 1/288 асса - "скрупулус". В ходу были и такие названия: "семис"- половина асса, "секстанс"- шестая его доля, "семиунция"- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию ( 2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.
Современную систему записи дробей с числителем и знаменателем создали в Индии. Только там писали знаменатель сверху, а числитель - снизу, и не писали дробной черты.
Пошаговое объяснение:
f(x) = (х + 2)(х - 3)(х - 5)
Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
и
(
5
;
+
∞
)
Выясним, каковы знаки этой функции в каждом из указанных промежутков.
Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
(
−
∞
;
−
2
)
(
−
2
;
3
)
(
3
;
5
)
(
5
;
+
∞
)
x+2 – + + +
x-3 – – + +
x-5 – – – +
Отсюда ясно, что:
если
x
∈
(
−
∞
;
−
2
)
, то f(x)<0;
если
x
∈
(
−
2
;
3
)
, то f(x)>0;
если
x
∈
(
3
;
5
)
, то f(x)<0;
если
x
∈
(
5
;
+
∞
)
, то f(x)>0.
Мы видим, что в каждом из промежутков
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
,
(
5
;
+
∞
)
функция сохраняет знак, а при переходе через точки -2, 3 и 5 ее знак изменяется.
-2 3 5
Вообще пусть функция задана формулой
f(x) = (x-x1)(x-x2) ... (x-xn),
где x–переменная, а x1, x2, ..., xn – не равные друг другу числа. Числа x1, x2, ..., xn являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
(x-x1)(x-x2) ... (x-xn) > 0,
(x-x1)(x-x2) ... (x-xn) < 0,
где x1, x2, ..., xn — не равные друг другу числа
Рассмотренный решения неравенств называют методом интервалов.
Приведем примеры решения неравенств методом интервалов.
Решить неравенство:
x
(
0
,
5
−
x
)
(
x
+
4
)
<
0
Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки
x
=
0
,
x
=
1
2
,
x
=
−
4
Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:
-4 0 0,5
Выбираем те промежутки, на которых функция меньше нуля и записываем ответ.
x
∈
(
−
4
;
0
)
∪
(
0
,
5
;
+
∞
)
или
−
4
<
x
<
0
;
x
>
0
,
5
Решить неравенство:
x
+
2
x
−
1
≤
2
x
+
2
x
−
1
≤
2
⇒
x
+
2
−
2
(
x
−
1
)
x
−
1
≤
0
⇒
−
x
+
4
x
−
1
≤
0
Наносим на числовую ось нули и точки разрыва функции:
1 4
Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.
x
∈
(
−
∞
;
1
)
∪
[
4
;
+
∞
)
или
x
<
1
;
x
≥
4