Разбиваем класс на группы, каждая из которых состоит из одного мальчика и "его гарема" - девочек, с которыми он дружит. Поскольку каждая девочка дружит не более, чем с одним мальчиком, девочка не может войти в две группы. Тем более мальчик не может войти в две группы. Поскольку у всех мальчиков разное количество знакомых девочек, все эти группы состоят из различного количества элементов. Количество мальчиков совпадает с количеством групп. Поэтому с математической точки зрения вопрос состоит в том, на какое наибольшее количество попарно различных натуральных слагаемых можно разбить число 23. Ясно, что если брать большие слагаемые, их окажется мало. Значит, нам выгодно брать слагаемые как можно меньше. Возьмем в качестве первого слагаемого число 1 (то есть в этой группе находится мальчик, у которого вообще нет знакомых девочек), второе слагаемое 2, третье 3, и так далее. Важно, чтобы сумма слагаемых не стала больше 23. Итак, 1+2=3<23, 1+2+3=6<23, 1+2+3+4=10<23, 1+2+3+4+5=15<23, 1+2+3+4+5+6=21<23. Больше ничего не добавишь. Чтобы получить ровно 23, нужно просто, скажем, 6 заменить на 8: 1+2+3+4+5+8=23. Вывод: в классе максимум 6 мальчиков
2. для q(x) также берем производную от F(x)=5x^4+4x^3-3x^2 F'(x)=20x^3+12x^2-6x=2x(10x^2+6x-3)
3. a) f(x)=6x^2+10x^4-3 берем интеграл неопределенный (S - интеграл)
F(x)= S (6x^2+10x^4-3)dx=6 x^3/3 +10 x^5 /5 -3x +const=2x^3+2x^5-3x+const
б) f(x)=9-8x+x^5 F(x) =S (9-8x+x^5)dx =9x - 4x^2+x^6 /6 +const
в) f(x)=x^2+x-1 F(x) =S( x^2+x-1)dx =x^3 /3 +x^2 /2 -x +const
4. найдем все первообразные функции f(x) => S(3x^2-2x+1)dx =x^3 -x^2+x +const
теперь найдем константу const => в полученное уравнение F(x)= x^3 -x^2+x +const подставим x= -1 y= 2 => 2=-1 -1 -1 +const => const =5
Искомая первообразная F(x) =x^3 -x^2+x +5