В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Fish474
Fish474
17.04.2020 17:17 •  Математика

Докажите, что p^2-1, где p-простое число больше 3, кратное 24

Показать ответ
Ответ:
lidochka4
lidochka4
19.07.2022 08:56

Пошаговое объяснение: {}Докажем более сильное утверждение: если p - нечетное число, не кратное трем, то p²-1 кратно 24.

А для этого докажем такое утверждение: произведение

                                          p³-p=(p-1)p(p+1)  

трех последовательных целых чисел, среднее из которых нечетное, кратно 24. Это утверждение следует из того, что 24=3·8, из того, что одно из трех последовательных чисел обязательно делится на 3, а также из того, что оба крайних числа четные, а одно из них даже делится на 4.

Переходим к доказательству утверждения про p²-1 =(p-1)(p+1)

при нечетном p, не делящимся на 3. Предыдущее утверждение гарантировало делимость на 24 произведения (p-1)p(p+1), но поскольку в нашем случае p не делится на 3, на три делится p-1 или p+1. Делимость на 8 также обеспечивали крайние числа.  

И, наконец, если p - простое число большее 3, оно нечетное и не делится на 3, поэтому к нему можно применить только что доказанное утверждение.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота